Supplemental Material S1. Summary of musician's advantage for speech-in-speech.

Study	Mean Age $\mathrm{M}=$ musician $\mathrm{NM}=$ nonmusician	Musician criteria	Paradigm(s)	Musician's Advantage?
Parbery-Clark, Skoe, Lam, \& Kraus (2009)	$\left\lvert\, \begin{aligned} & \text { M/NM: } 23 \pm 3 y \\ & \text { (range: 19-31) } \end{aligned}\right.$	≥ 10 y training Started \leq age 7 Practice $\geq 3 \mathrm{xs} / \mathrm{wk}$	QuickSIN Repeat sentences presented in 4 talker babble (composed of 3 female voices, 1 male voice), varying the signal to noise ratio (SNR).	Yes
Parbery-Clark, Strait, Anderson, Hittner, \& Kraus (2011)	$\begin{aligned} & \text { M: } 55 \pm 4.24 \mathrm{y} \\ & \mathrm{NM}: 54 \pm 6.02 \mathrm{y} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Started } \leq \text { age } 9 \\ & \text { Practice } \geq 3 \mathrm{xs} / \mathrm{wk} \end{aligned}\right.$	WIN \& QuickSIN Words and sentences in 4-talker babble	Yes (both tasks)
Zendel and Alain (2012)	$\begin{aligned} & \text { M: } 45.3 \text { y } \\ & \text { (range: 19-91) } \\ & \text { NM: 49.3 y } \\ & \text { (range: 18-86) } \end{aligned}$	$\begin{aligned} & \text { Started } \leq \text { age } 16 \\ & \geq 6 \text { y lessons } \end{aligned}$	QuickSIN Sentences in 4-talker babble	$\underset{\text { (for older musicians) }}{\text { Yes }}$
Strait, Parbery- Clark, O’Connell, \& Kraus, (2013)	M/NM: 3-5 y	Started training ≤ 12 months prior Weekly lessons Practice $\geq 4 \mathrm{xs} / \mathrm{wk}$	ABR /da/ Hear a syllable in quiet and/or in babble and record brainstem response via electroencephalogram (EEG). Presented in 6 -talker babble (2 male voices, 2 females voices)	Yes
Ruggles, Freyman, \& Oxenham (2014)	$\begin{aligned} & \text { M: } 21.8 \mathrm{y} \\ & \mathrm{NM}: 20.7 \mathrm{y} \end{aligned}$	$\begin{aligned} & \geq 10 \text { y training } \\ & \text { Started } \leq \text { age } 10 \\ & \text { Practice } \geq 5 \mathrm{hr} / \mathrm{wk} \end{aligned}$	QuickSIN Sentences in 4-talker babble	No difference
$\begin{aligned} & \text { Boebinger et al. } \\ & (2015) \end{aligned}$	M/NM: $27.2 \pm 6.9 \mathrm{y}$	≥ 10 y training Started \leq age 7 Practice $\geq 3 \mathrm{xs} / \mathrm{wk}$	BKB sentence targets Spoken by a female speaker. Presented with a male masker	No difference
Zendel et al. (2015)	M: 23.4 ± 4.3 y NM: 21.9 ± 2.6 y	≥ 10 y training Started \leq age 15 Practice $\geq 10 \mathrm{hr} / \mathrm{wk}$	CVC words Presented in 4-talker babble (15 dB SNR, 0 dB SNR)	$\underset{\text { (only at } 0 \mathrm{~dB} \text { SNR) }}{\text { Yes }}$
Anaya et al. (2016)	M/NM: 20.72 ± 2.72 y	Started \leq age 9 Enrolled in college music program	PRESTO Sentences presented in 6-talker babble	No difference (for composite speech-in-speech + speech-in-noise score)
$\begin{aligned} & \text { Başkent \& Gaudrain } \\ & (2016) \end{aligned}$	M: 22.75 ± 2.43 y NM: 21.89 ± 1.97 y	≥ 10 y training Started \leq age 7	Versfeld et al. (2000) sentences produced in 1-talker babble Masker created by concatenating random 1 s sequences of non-target sentences. Mean $f 0$ and apparent vocal tract length were manipulated.	Yes
Clayton et al. (2016)	M: 22.5 ± 2.8 y NM: 20.47 ± 1.4 y	≥ 10 y training Practice $\geq 5 \mathrm{hr} / \mathrm{wk}$ Enrolled in college music program	Target and 1-talker masker sentences (Swaminathan et al., 2015). Targets presented at 0°, while makers were either also presented at the same spatial location or at $\pm 15^{\circ}$. Target and maskers were recorded by different female talkers. Target sentences were cued by the call-sign 'Jane.'	Yes (when masker was spatially separated; no advantage when target and masker were at 0°)
Mandikal Vasuki, Mridula Sharma, Demuth, \& Arciuli (2016)	M: 28 y (median) NM: 25 y (median)	≥ 10 y training Started \leq age 9	LiSN-S test Repeat sentences produced by the same or a different talker at $\left(0^{\circ}\right)$	No difference
Slater \& Kraus (2016)	M: 25.4 ± 5.7 y (Percussionists) 23.4 ± 3.6 y (Vocalists) NM: 23.2 ± 3.8 y	Active musicians ≥ 7 y	WIN \& QuickSIN Words and sentences in 4-talker babble	Yes (QuickSIN for drummers only. No difference for WIN)
Deroche, Limb,	M: 21.9 ± 2.6 y	8 y training	Harvard/IEEE Sentence for target and	No difference

$\begin{aligned} & \text { Chatterjee, \& Gracco } \\ & (2017) \end{aligned}$	NM: 25.1 ± 5.9 y	Started \leq age 8	2-talker maskers spoken by the same male talker The masker had a fixed f0 $(150 \mathrm{~Hz})$, while the target f 0 varied ($\Delta \mathrm{f} 0=0,-2,-8 \mathrm{ST}$). Target and maskers were also presented in the same and different ears.	(no musician effect or interaction with f0 or ear)
Madsen, Whiteford, \& Oxenham (2017)	M: $21.13 \pm 2.47 \mathrm{y}$ NM: 20.9 ± 2.70	$\begin{aligned} & 10 \mathrm{y} \text { training } \\ & \text { Started } \leq \text { age } 7 \\ & \text { Practice } \geq 5 \mathrm{hr} / \mathrm{wk} \end{aligned}$	Target (HINT) sentences with 1-talker interferer (IEEE sentences) Target and masker recorded by different male talkers. The masker average f 0 was lower than the target by $0,1,2,4,8$ ST ($1 / 2$ trials with normal intonation and $1 / 2$ of trials monotone).	No difference (for both natural and monotone f0 conditions)
Morse-Fortier, Parrish, Baran, \& Freyman (2017)	$\begin{aligned} & \text { M: } 20.1 \mathrm{y} \\ & \text { NM: } 22.5 \mathrm{y} \end{aligned}$	Daily practice Enrolled in college music program	Target sentences with 2-talker masker sentences (from Helfer, 1997) Monitored for words from a list. Target voice was a female talker. Maskers were 2 other female talkers.	Yes
Yeend et al. (2017)	M/NM: 45 y (range: 30-57)	Professional musicians	NAL-DCT Monologues presented in multitalker background speech (-7dB SNR) LiSN-S test Repeat sentences produced by a different talker at $\left(\pm 90^{\circ}\right)$	No difference (both tasks)
Zendel, West, Belleville, \& Peretz (2017)	Musical training group: $67.5 \pm 4.2 y$ Control: $69.3 \pm 5.7 \mathrm{y}$	All were nonmusicians (≤ 3 y musical training)	Monosyllabic words in multitalker babble Babble created by combining monologues spoken by 4 speakers at 15 dB or 0 dB SNR	Yes (Musical training group showed more improvement)
Başkent et al. (2018)	$\begin{aligned} & \text { M: } 12.4 \mathrm{y} \\ & \text { (range }=11-13 \text {) } \\ & \text { NM: } 12.3 \mathrm{y} \text { (range: } \\ & 11-14) \end{aligned}$	≥ 5 y training Started \leq age 7 Musical training in the last 3 y	Meaningful target sentences with a masker (concatenated partial sentences). Target spoken by a female talker. Masker either by the same female talker or a male talker (masker onset preceded target sentence).	No difference
Couth et al. (2021)	$\begin{aligned} & \text { M: 18-26 y } \\ & \text { NM: } 18-27 \text { y } \end{aligned}$	College/early-career musicians (either completing or graduated < 1 y prior)	CRM paradigm Target cued by ‘Baron’; two maskers. Target and masker talkers were randomly selected from 2 male and 2 female talkers	No difference
Kaplan et al. (2021)	$\begin{aligned} & \text { M: } 27.13 \mathrm{y} \\ & \text { (range: } 19-45 \text {) } \\ & \text { NM: 26.35 y } \\ & \text { (range 19-46) } \end{aligned}$	≥ 10 y training Started \leq age 7 Practicing ≥ 3 y prior to the study	Semantically neutral target sentences with 1-talker masker (meaningful sentences from Versfeld et al., 2000). Target and masker were recorded by 2 female talkers. Target-to-masker ratio (TMR): $-3 \mathrm{~dB},-5 \mathrm{~dB}$, $-7 \mathrm{~dB},-9 \mathrm{~dB}$	Yes
Mussoi (2021)	$\begin{aligned} & \text { M: } 69.5 \pm 4.5 \mathrm{y} \\ & \text { NM: } 70.1 \pm 3.6 \text { y } \end{aligned}$	≥ 5 y training Started \leq age 10 Practice $\geq 3 \mathrm{hr} / \mathrm{wk}$	QuickSIN Words in 4-talker babble	No difference

Supplemental Material S2. Calculations of semitone separation based on Kishon-Rabin et al. (2001).

Group	Relative difference limen (relDLF); $\Delta f / f_{1}$	Just noticeable difference (JND) relative to 100 Hz	Semitone difference from 100 Hz; hqmisc R package $f 2 s t\left(f_{2}\right.$, base $\left.=100\right)$
Musicians	$\Delta f / f_{1}=0.00907$	$\Delta f=0.00907: f_{100 \mathrm{~Hz}}$ $\Delta f=0.907$ $f_{2}=100.907$	$\Delta \mathrm{ST}=0.156$
Nonmusicians	$\Delta f / f_{1}=0.01783$	$\Delta f=0.01783: f_{100 \mathrm{~Hz}}$ $\Delta f=1.783$ $f_{2}=101.783$	$\Delta \mathrm{ST}=0.306$

Kishon-Rabin et al. (2001) found that musicians had a smaller relative difference limen (refDLF: $\Delta f / f_{1}=0.00907$) than nonmusicians (relDLF: $\Delta f f f_{1}=0.01783$) in perceiving a difference in pure tones. We calculated what this difference limen would be relative to $100 \mathrm{~Hz}\left(\Delta f=\right.$ relDLF: $f_{100 \mathrm{~Hz}}$). We then calculated the difference in semitones between the just-noticeable difference (JND) frequency (100.907 Hz for musicians, 101.783 for nonmusicians) and starting frequency $(100 \mathrm{~Hz})$ with the hqmisc R package: $f 2 s t(100 \mathrm{~Hz}+\Delta f$, base $=100 \mathrm{~Hz})$.

Supplemental Material S3. Sentence identification (Experiment 1): Posterior means (Estimate), standard deviation of the posterior (Error), 95% credible intervals (Q2.5, Q97.5), and percent of posterior distribution above or below zero, for fixed effects. Effects whose credible intervals do not include zero, or those with 95% of their distribution on one side of 0 are in bold.

					$\%$ Distribution	
	Estimate	Error	Q2.5	Q97.5	<0	>0
Intercept	$\mathbf{0 . 8 3}$	$\mathbf{0 . 2 8}$	$\mathbf{- 1 . 3 8}$	$\mathbf{- 0 . 2 9}$	$\mathbf{1 0 0}$	$\mathbf{0}$
Group (Musician)	0.04	0.04	-0.04	0.12	17	83
Age (YA)	$\mathbf{0 . 1 3}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 2 2}$	$\mathbf{0}$	$\mathbf{1 0 0}$
F0	$\mathbf{0 . 2 7}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 1 9}$	$\mathbf{0 . 3 4}$	$\mathbf{0}$	$\mathbf{1 0 0}$
Block	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 1}$	$\mathbf{0}$	$\mathbf{0 . 0 5}$	$\mathbf{1}$	$\mathbf{9 9}$
SingleSentenceAcc	-0.04	0.05	-0.13	0.05	83	17
Group(Musician):Age(YA)	$\mathbf{0 . 1}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 1 9}$	$\mathbf{1}$	$\mathbf{9 9}$
Group(Musician):F0	0.02	0.04	-0.06	0.09	34	66
Age(YA):F0	0.05	0.04	-0.02	0.13	8	92
Group(Musician):Age(YA):F0	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 4}$	$\mathbf{- 0 . 0 1}$	$\mathbf{0 . 1 4}$	$\mathbf{5}$	$\mathbf{9 5}$
Num. observations = 9,792; Num participants $=51 ;$ Num. sentences $=16$						

Supplemental Material S4. Confusion matrix for participants who did not reach 90% in single vowel identification (shown in percentages).

	observed	bought	bet	beat	boot
expected	bat	5.3%	22.7%	2.3%	0%
$/ æ /$	69.7%	31.1%	1.5%	0.8%	0%
$/ \mathrm{a} /$	66.7%	6.1%	78%	6.8%	3%
$/ \varepsilon /$	6.1%	1.5%	15.9%	81.1%	1.5%
$/ \mathrm{i} /$	0%	22.7%	2.3%	0%	74.2%
$/ \mathrm{u} /$	0.8%				

Supplemental Material S5. Confusion matrix for YA nonmusicians who did reach 90% in single vowel identification (shown in percentages).

	observed				
expected	bat	bought	bet	beat	boot
$/ \mathfrak{x} /$	89.7%	0%	10.3%	0%	0%
$/ \mathrm{a} /$	23.1%	76.9%	0%	0%	0%
$/ \varepsilon /$	0%	1.3%	94.9%	2.6%	1.3%
$/ \mathrm{i} /$	0%	0%	2.6%	97.4%	0%
$/ \mathrm{u} /$	0%	1.3%	5.1%	0%	93.6%

Supplemental Material S6. Confusion matrix for YA musicians who did reach 90% in single vowel identification (shown in percentages).

	observed	bought	bet	beat	boot
expected	bat	0%	2.1%	0%	0%
$/ \mathfrak{} /$	97.9%	88.5%	0%	0%	0%
$/ \mathrm{a} /$	11.5%	0%	100%	0%	0%
$/ \varepsilon /$	0%	0%	0%	100%	0%
$/ \mathrm{i} /$	0%	0%	0%	100%	
$/ \mathrm{u} /$	0%			0%	

Supplemental Material S7. Confusion matrix for OA nonmusicians who did reach 90% in single v owel identification (shown in percentages).

	observed	bought	bet	beat	boot
expected	bat	0%	6%	0%	0%
$/ \mathfrak{Z} /$	94%	88.1%	1.2%	0%	0%
$/ \mathrm{a} /$	10.7%	4.8%	91.7%	2.4%	0%
$/ \varepsilon /$	1.2%	0%	6%	92.9%	0%
$/ \mathrm{i} /$	1.2%	3.6%	1.2%	1.2%	94%
$/ \mathrm{u} /$	0%				

Supplemental Material S8. Confusion matrix for OA musicians who did reach 90% in single vowel identification (shown in percentages).

	observed				
expected	bat	bought	bet	beat	boot
$/ \mathfrak{x} /$	96.4%	0%	2.4%	1.2%	0%
$/ \mathrm{a} /$	16.7%	83.3%	0%	0%	0%
$/ \varepsilon /$	0%	0%	97.6%	0%	2.4%
$/ \mathrm{i} /$	1.2%	0%	0%	98.8%	0%
$/ \mathrm{u} /$	0%	0%	4.8%	0%	95.2%

Supplemental Material S9. Double vowel identification (Experiment 2): Posterior means (Estimate), standard deviation of the posterior (Error), 95% credible intervals (Q2.5, Q97.5), and percent of posterior distribution above or below zero, for fixed effects. Effects whose credible intervals do not include zero, or those with 95% of their distribution on one side of 0 are in bold.

	Estimate	Error	Q2.5	Q97.5	\% Distribution	
					<0	>0
Intercept	-1.19	0.21	-1.6	-0.77	100	0
Group(Musician)	0.1	0.13	-0.16	0.36	22	78
F0	0.45	0.04	0.37	0.52	0	100
Age(YA)	-0.1	0.13	-0.36	0.16	78	22
Block	0.09	0.01	0.07	0.11	0	100
VowelDistance	0.38	0.19	0	0.75	3	97
JointSingleVowelAcc	0.15	0.02	0.11	0.2	0	100
Group(Musician):F0	0	0.04	-0.07	0.07	53	47
Group(Musician):Age(YA)	0.15	0.13	-0.1	0.41	12	88
F0:Age(YA)	-0.09	0.04	-0.16	-0.02	99	1
Group(Musician):VowelDistance	0.03	0.18	-0.33	0.4	43	57
Age(YA):VowelDistance	-0.04	0.18	-0.4	0.32	59	41
Group(Musician):F0:Age(YA)	0	0.04	-0.07	0.07	49	51
Group(Musician):Age(YA): VowelDistance	-0.05	0.18	-0.41	0.31	61	39
Num. observations $=12,000 ;$ Num. participants $=50 ;$ Num. vowel pairs $=20$						

