Supplemental material, Cavanaugh et al., "Reproducibility in Small-N Treatment Research: A Tutorial Using Examples From
Aphasiology," JSLHR, https://doi.org/10.1044/2022_JSLHR-22-00333

S2. Supplemental Matrials Part 2.

Reproducibility in small-N treatment research: a tutorial using examples from aphasiology

Introduction

This document details the code batch calculate effect sizes.

Setup

Load packages

library (here) # for locating files

library(GGally) # Plotting

library(SingleCaseES) # calculating SMD, Tau-U

library (1lme4) # frequentist mized-effects models

library (emmeans) # estimating effect sizes from lme

library (brms) # bayestan mized-effects models

library(tidybayes) # estimating effect sizes from brms

library(ggdist) # Visualizing posterior distributions
#

library(tidyverse) data wrangling and plotting

set a seed for reproducibility
set.seed(42)

Load effect size functions

For this analysis, we created a number of custom effect size functions. Functions serve to isolate complex
code that serves a specific purpose from code used in the primary analysis. These functions are in in many
way specific to the present data set, but were created to be generalizable to other similar data. The functions

are in a file called effect-size-functions.R and are highly commented to explain each step.

load functions that batch calculate effect sizes
source (here("scripts", "effect-size-functions.R"))
print the four functions

1s0

[1] "hook_chunk"

Read in data

Note that the current setup uses RStudio R projects (https://support.rstudio.com/hc/en-us/articles/
200526207-Using-RStudio-Projects). One of the features of R projects is that the working directory is
automatically set to the project root (the folder with the .Rproj). A discussion of R projects can be found
at https://www.tidyverse.org/blog/2017/12/workflow-vs-script/. In this case here("data") refers to the

/study-data folder inside the project.

create a list of files

files <- list.files(
here("data"), # look in the study-data folder
full.names = TRUE, # use the full paths of the files
pattern = " # only read in .csv files
recursive = TRUE) # include files within subfolders

n
.csv",

read in the files and combine them together
map_df takes a function, in this case read_csv().
show_col_types suppresses output sinc we're reading in many files
df <- files »>%
map_dfr(read_csv, show_col types = FALSE)

Calculate effect sizes

‘tBI{

The following calculates dpg using the observations used by Wambaugh et al., (2017). Note that the knitr
chunk is set to warning = FALSE (for all d_BR calculations) to suppress the numerous warnings about zero

variability at baseline for readability.

start with all i2tem-level data
df smd = df %>%
filter for only baseline and treatment phases included in
wambaugh 2017 smd calculation
filter(spt2017 == "pre" | spt2017 == "post") %>%
for each combination of these variables

https://support.rstudio.com/hc/en-us/articles/200526207-Using-RStudio-Projects
https://support.rstudio.com/hc/en-us/articles/200526207-Using-RStudio-Projects
https://www.tidyverse.org/blog/2017/12/workflow-vs-script/

group_by(participant, phase, condition, itemType, session,
spt2017) %>%
calculate the number of correct responses
this ends with the number of correct responses per session
per participant, condition, and itemType
summarize(correct = sum(response), .groups = "drop") %>%
SingleCaseES: :batch_calc_ES(grouping = c(participant, itemType, condition),
condition = spt2017, outcome = correct,
ES = "SMD", bias_correct = FALSE,
baseline_phase = "pre")

The following calculates dgr using all baseline observations

start with all item-level data
df _smd_all = df %>%
filter for only baseline and treatment phases included in
wambaugh 2017 smd calculation
filter(phase == '"baseline" | phase == "treatment" & spt2017 == "post") %>%
for each combination of these wariables
group_by(participant, phase, condition, itemType, session,
spt2017) %>%
calculate the number of correct responses
this ends with the number of correct responses per session
per participant, condition, and itemType
summarize(correct = sum(response), .groups = "drop") %>%
SingleCaseES: :batch_calc_ES(grouping = c(participant, itemType, condition),
condition = phase, outcome = correct,
ES = "SMD", bias_correct = FALSE,
baseline_phase = "baseline")

The following calculates dgr for each phoneme, and then averaging the two scores, using the last 5 baseline

observations

Step 1: Run the batch_calc_ES function from SingleCaseES:

df _smd_phoneme = df %>%

filter for only baseline and treatment phases included in

wambaugh 2017 smd calculation

filter(spt2017 == "pre" | spt2017 == "post") %>%

for each combination of these wariables

group_by(participant, phase, condition, itemType, session,

spt2017, phoneme) %>%

calculate the number of correct responses

this ends with the number of correct responses per session

per participant, condition, and itemType

summarize(correct = sum(response), .groups = "drop") %>%

grouping is by participant, ttemType, condition, and phoneme

SingleCaseES: :batch_calc_ES(grouping = c(participant, itemType, condition, phoneme),
condition = phase, # in SingelCaseES, this refers to the treatment phases
outcome = correct, # dependent wvariable

ES = "SMD", # effect size choices
bias_correct = FALSE, # not used by beeson & robey

baseline_phase = "baseline",# indicates which phase is the baseline
treatment_phase = "treatment"# indicates which phase is the treatment
) W>h

select(-SE, -CI_upper, -CI_lower, -ES) %>%
mutate(imp = 0)

when one phoneme has mno variability in the baseline phase, use the variability
from the other phoneme. This requirTe some custom coding. First,we need to
calculate the change scores for each time series.

df _change_scores = df %>%
filter for only baseline and treatment phases included in
wambaugh 2017 smd calculation
filter(spt2017 == "pre" | spt2017 == "post") %%
for each combination of these wariables
group_by(participant, phase, condition, itemType, phoneme, session,
spt2017) %>%
calculate the number of correct responses
this ends with the number of correct responses per session
per participant, condition, and itemType
summarize(correct = sum(response), .groups = "drop") %>%
calculate the mean correct at baseline and treatment
group_by(participant, condition, itemType, phoneme, phase) %>%
summarize (mean_score = mean(correct), .groups = "drop") %>%
move the data from long to side to calculate the change score
pivot_wider(names from = phase, values from = mean_score) 7%>%
calculate the change score by subtracting mean baseline from tz
mutate(change = treatment-baseline, .keep = "unused")

df _smd_phoneme_fix <- df_smd_phoneme %>%
add the changes scores to our caclulated data frame
left_join(df_change_scores, by = c("participant", "condition", "itemType", "phoneme")) ¥%>%
only keep rows where there s an nan or inf value (within the grouping)
batch_calc_ES returns NalN or Inf for series where SMD cannot be calculated
group_by(participant, condition, itemType) %>%
filter(any(is.infinite(Est)) | any(is.nan(Est))) %>%
get rid of rows where all values within the grouping is inf or nan
filter(!all(is.infinite(Est) | is.nan(Est))) %>%
for each grouping pair, set the NA to the other phoneme SD
then recalculate SMD 4if SMD <s inf or Nal
mutate(baseline SD = max(baseline_SD, na.rm = T),
imp = ifelse(is.infinite(Est) | is.nan(Est), 1, 0),
Est = ifelse(is.infinite(Est) | is.nan(Est), change/baseline_SD, Est)
) W>h
ungroup() %>%
select(-change) # drop this column

update the original data using the fized data

df _smd_phoneme = df_smd_phoneme %>%
rows_update (df _smd_phoneme_fix,
by = c("participant", "condition", "itemType", "phoneme")) %>%

change inf and NaN to NA so that participants who do not have
both scores for each phoneme will not get calculated
mutate(Est = ifelse(is.infinite(Est) | is.nan(Est), NA, Est)) %>%
group_by(participant, condition, itemType) %>%
summarize the smd and sd across phonemes
note whether or not the sd was used from the other phoneme
incases where variability was zero
summarize(Est = mean(Est, na.rm = FALSE),

baseline SD = mean(baseline_SD, na.rm = FALSE),

imputed = ifelse(any(imp==1), 1, 0),

.groups = "drop")

The following calculates dgr for each phoneme, and then averaging the two scores, using the last all baseline

observations

Step 1: Run the batch_calc_ES function from SingleCaseES:

df _smd_phoneme_all = df %>%

filter for only baseline and treatment phases included in

wambaugh 2017 smd calculation

filter(phase == '"baseline" | phase == "treatment" & spt2017 == "post") %>%

for each combination of these wariables

group_by(participant, phase, condition, itemType, session,

spt2017, phoneme) %>%

calculate the number of correct responses

this ends with the number of correct responses per session

per participant, condition, and itemType

summarize (correct = sum(response), .groups = "drop") %>%

grouping is by participant, ttemType, condition, and phoneme

SingleCaseES: :batch_calc_ES(grouping = c(participant, itemType, condition, phoneme),
condition = phase, # in SingelCaseES, this refers to the treatment phases
outcome = correct, # dependent wvariable
ES = "SMD", # effect size choices
bias_correct = FALSE, # not used by beeson & robey

baseline_phase = "baseline",# indicates which phase is the baseline
treatment_phase = "treatment"# indicates which phase is the treatment
) W>h

select(-SE, -CI_upper, -CI_lower, -ES) %>%
mutate(imp = 0)

when one phoneme has no wvartiability in the baseline phase, use the wvariability
from the other phoneme. This require some custom coding. First,we need to
calculate the change scores for each time series.

df _change_scores = df %>%
filter for only baseline and treatment phases included in
wambaugh 2017 smd calculation

filter(phase == '"baseline" | phase == "treatment" & spt2017 == "post") %>%

for each combination of these wariables

group_by(participant, phase, condition, itemType, phoneme, session,
spt2017) %>%

calculate the number of correct responses

this ends with the number of correct rTesponses per session

per participant, condition, and itemType

summarize(correct = sum(response), .groups = "drop") %>%

calculate the mean correct at baseline and treatment

group_by(participant, condition, itemType, phoneme, phase) %>%

summarize (mean_score = mean(correct), .groups = "drop") %>%

move the data from long to side to calculate the change score

pivot_wider(names from = phase, values from = mean_score) 7%>%

calculate the change score by subtracting mean baseline from tz

mutate(change = treatment-baseline, .keep = "unused")

df _smd_phoneme_fix <- df_smd_phoneme_all %>
add the changes scores to our caclulated data frame
left_join(df_change_scores, by = c("participant", "condition", "itemType", "phoneme")) ¥%>%
only keep rows where there s an nan or inf value (within the grouping)
batch_calc_ES returns NalN or Inf for serties where SMD cannot be calculated
group_by(participant, condition, itemType) %>%
filter(any(is.infinite(Est)) | any(is.nan(Est))) %>%
get rid of rows where all values within the grouping <s inf or nan
filter(!lall(is.infinite(Est) | is.nan(Est))) %>%
for each grouping pair, set the NA to the other phoneme SD
then recalculate SMD if SMD <s inf or Nall
mutate(baseline SD = max(baseline_SD, na.rm = T),
imp = ifelse(is.infinite(Est) | is.nan(Est), 1, 0),
Est = ifelse(is.infinite(Est) | is.nan(Est), change/baseline_SD, Est)
) W>h
ungroup() %>%
select(-change) # drop this column

update the original data using the fized data
df _smd_phoneme_all = df_smd_phoneme_all %>7%
rows_update (df _smd_phoneme_fix,
by = c("participant", "condition", "itemType", "phoneme")) %>%
change inf and NaN to NA so that participants who do mot have
both scores for each phoneme will not get calculated
mutate(Est = ifelse(is.infinite(Est) | is.nan(Est), NA, Est)) %>%
group_by(participant, condition, itemType) %>%
summarize the smd and sd across phonemes
note whether or not the sd was used from the other phoneme
incases where variability was zero
summarize(Est = mean(Est, na.rm = FALSE),
baseline SD = mean(baseline_SD, na.rm = FALSE),
imputed = ifelse(any(imp==1), 1, 0),
.groups = "drop")

PMG

The following calculates PMG using the observations used by Wambaugh et al., (2017)

df_pmg = df %>%
This uses the observations used in wambaugh et al., 2017
filter(spt2017 == "pre" | spt2017 == "post") %>%
group_by(participant, phase, condition, itemType, session,
spt2017, trials) %>%
calculate the number of correct responses
this ends with the number of correct responses per session
per participant, condition, and itemType
also calculate the number of trials which is necessary for PMG
summarize(correct = sum(response),
trials = unique(trials)#*2, .groups = "drop") %>%
group_by(participant, condition, itemType) %>%
summarize (PMG(outcome = correct, phase = spt2017, nitems = trials,
bl_phase = "pre", tx_phase = "post"), .groups = "drop")

The following calculates PMG using all baseline observations

df _pmg_all = df %>%

filter(phase == '"baseline" | phase == "treatment" & spt2017 == "post") %>%
group_by(participant, phase, condition, itemType, session,

spt2017, trials) %>%
calculate the number of correct responses
this ends with the number of correct responses per session
per participant, condition, and itemType
also calculate the number of trials which is necessary for PMG
summarize (correct = sum(response),

trials = unique(trials)*2, .groups = "drop") %>%
group_by(participant, condition, itemType) %>%
summarize (PMG(outcome = correct, phase = phase, nitems = trials,

bl_phase = "baseline", tx_phase = "treatment"), .groups = "drop")

Tau-U

Calculates Tau-U based on a cutoff of 0.33

df_tau 33 = df %>%
filter for all obseravtions in the baseline and
treatment phase.
filter(phase == "baseline" | phase == "treatment") %>%
group_by(participant, phase, condition, itemType, session) %>%
add up the number of correct responses
summarize(correct = sum(response), .groups = "drop") %>%
group_by(participant, condition, itemType) %>%
This calls a custom Tau function which uses Tau-U

in cases where the trend is >= the cutoff value

summarize (Tau_custom(outcome = correct, phase = phase,
bl_phase = "baseline", tx_phase = "treatment",
session = session, cutoff = 0.33), .groups = "drop")

Calculates Tau-U based on a cutoff of 0.40

df_tau_40 = df %>%

filter(phase == '"baseline" | phase == "treatment") ¥>%
group_by(participant, phase, condition, itemType, session) %>%
summarize(correct = sum(response), .groups = "drop") %>%

group_by(participant, condition, itemType) %>%
summarize (Tau_custom(outcome = correct, phase = phase,
bl_phase = "baseline", tx_phase = "treatment",

session = session, cutoff = 0.4), .groups = "drop") %>%

select(participant, condition, itemType, Est)

Calculates Tau-U based on a cutoff of 0.33 with only the last 5 baseline obs

df_tau_last5_33 = df %>
filter for all obseravtions in the baseline and
treatment phase.
filter(spt2017 == "pre" | phase == "treatment") ¥%>%
group_by(participant, phase, condition, itemType, session) %>%
add up the number of correct responses
summarize (correct = sum(response), .groups = "drop") %>%
group_by(participant, condition, itemType) %>%
Thts calls a custom Tau function which uses Tau-U
in cases where the trend is >= the cutoff wvalue
summarize (Tau_custom(outcome = correct, phase = phase,
bl_phase = "baseline", tx_phase = "treatment",

session = session, cutoff = 0.33), .groups = "drop") %>%

select(participant, condition, itemType, Est)

Calculates Tau-U based on a cutoff of 0.40 with only the last 5 baseline obs

df _tau_last5_40 = df %>%
filter for all obseravtions in the baseline and
treatment phase.
filter(spt2017 == "pre" | phase == "treatment") %>%
group_by(participant, phase, condition, itemType, session) %>%
add up the number of correct responses
summarize(correct = sum(response), .groups = "drop") %>%
group_by(participant, condition, itemType) %>%
Thts calls a custom Tau function which uses Tau-U
in cases where the trend is >= the cutoff wvalue
summarize (Tau_custom(outcome = correct, phase = phase,
bl_phase = "baseline", tx_phase = "treatment",

session = session, cutoff = 0.40), .groups = "drop") ¥%>%

select(participant, condition, itemType, Est)

Bayesian Mixed-effects models

Setup data (see code in supplemental 1 for details)

df_itts_group = df %>%
filter(phase == '"baseline" | phase == "treatment") %>%
mutate(baseline slope = session,

level change = ifelse(phase == '"baseline", 0, 1),
slope_change = (session - (n_baselines+2))#*level_change) %>%

select(response, participant, condition, itemType, phase,

phoneme, item, baseline_slope, level_change, slope_change)

Note that we would typically use n__baselines+1 if we sampled performance at every treatment session

Blocked Treated

mod_tx_bl <- brm(

#

H R R R

outcome variable response

the 0 a+ Intercept syntaxz llows us to put a mon-centered prior on the intercept
the population-level effects (fized effects in frequentist terminology)

are baseline_slope, level_change, and slope_change. The group-level

effects (random effects) are in parentheses.

response ~ 0 + Intercept + baseline_slope + level_change + slope_change +

(1 + baseline_slope + level_change + slope_change | participant) +
(1] item),
data, filtered for the itemType and condition
data = df_itts_group %>% filter(condition == "blocked",
itemType == "tx"),
= bernoulli(), # special case of binomial with 1 trial
iter = 3000, # number of iterations
warmup = 1000, # number of iterations to toss
cores = 4, chains = 4, # 4 Markov chains across 4 computer cores
prior distributions include a specific prior on the intercept
and a general prior on the population-level effects
prior = c(
prior(normal(-1, 2.5), class = b, coef = Intercept),
prior(normal(0, 2.5), class = b)
),
because of divergent transitions see
cran.r-project.org/web/packages/brms/vignettes/brms_overview.pdf
control = list(adapt_delta = 0.9),
set a seed for reproducibility
seed = 42,
save the model so we don't have to refit it every time we compile
file = here("output","mod_tx_bl"),

family

only refitt the model when something changes
"on_change"

Blocked Generalization

mod_gx_bl <- brm(

response ~ O + Intercept + baseline_slope + level_change + slope_change +
(1 + baseline_slope + level_change + slope_change | participant) +

(1] item),
df _itts_group %>% filter(condition == "blocked",
itemType == "gx"),

bernoulli(),

3000,
1000,

4, 4,

c(

prior(normal(-1, 2.5),

b, Intercept),
prior (normal(0, 2.5), b)
),
list(0.85),
42,
here("output", "mod_gx_bl"),
"on_change"
)

Random Treated

mod_tx_ra <- brm(

response ~ O + Intercept + baseline_slope + level_change + slope_change +
(1 + baseline_slope + level_change + slope_change | participant) +

(1] item),
df _itts_group %>% filter(condition == "random",
itemType == "tx"),
bernoulli(),
3000,
1000,
4, 4,
c(
prior(normal(-1, 2.5), b, Intercept),
prior(normal(0, 2.5), b)
)¢
42,
list(0.85),
here("output","mod_tx_ra"),
"on_change"
)

10

Random Generalization

mod_gx_ra <- brm(
response ~ O + Intercept + baseline_slope + level_change + slope_change +
(1 + baseline_slope + level_change + slope_change | participant) +

(1] item),
df_itts_group %>% filter(condition == "random",
itemType == "gx"),
bernoulli(),
3000,
1000,
4, 4,
list(0.9),
c(
prior(normal(-1, 2), b, Intercept),
prior(normal(0, 2), b)
g
42,

here("output","mod_gx_ra"),
"on_change"

Calculate effect sizes for each model. The function takes as arguments the model object the itemtype and

condition. It is well documented in R/effect-size-functions.R

es_tx_bl = glmmES(mod_tx_bl, "tx", "blocked")
es_tx_ra = glmmES(mod_tx_ra, "tx", "random")
es_gx_bl = glmmES(mod_gx_bl, "gx", "blocked")
es_gx_ra = glmmES(mod_gx_ra, "gx", "random")

Pull the effect sizes together to create a correlation plot

select only the necessary columns

smd =

df_smd %>%

select(participant, condition, itemType, Est, baseline_SD)
select only the necessary columns
png =

df _pmg %>%

select(participant, condition, itemType, PMG, raw_change_exit, baseline_score)
select only the necessary columns
tau =

df _tau_33 %>%

select(participant, condition, itemType, Est)

combine the effect sizes from each of the conditions
from the bayesian models then

11

select only the necessary columns

bglmm
bind_rows(es_tx_bl, es_tx_ra, es_gx_bl, es_gx_ra) %>%
select(participant, ES, unit, itemType, condition) %>%
pivot_wider(
rename (

unit,
logit,

join all the effect sizes together
= smd %>%

es

left_join(pmg,
left_join(tau,
left_join(bglmm,
mutate (

select(participant, condition, itemType, SMD, PMG, Tau, glmm_logit, glmm_percent)

ES) ¥%>%

percent)

c("participant", "itemType", "condition")) %>%
c("participant", "itemType", "condition")) %>%

factor(itemType,

Plot comparisons

c("participant", "itemType", "condition")) %>%

C(”tX” s "gX”))) %>%

This is figure 3. in the manuscript. Code hidden due to length (available on github)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:

[1,1]
[1,2]
[1,3]
[1,4]
[1,5]
[2,1]
[2,2]
[2,3]
[2,4]
[2,5]
[3,1]
[3,2]
[3,3]
[3,4]
[3,5]
(4,1]
[4,2]
[4,3]
[4,4]
[4,5]
[5,1]
[5,2]
[5,3]
[5,4]
[5,5]
[1,1]
[1,2]
[1,3]
[1,4]
[1,5]
[2,1]
[2,2]
[2,3]

S >
>

> ___

—> ___

> __

> __
D> e

> __

> ___

> ___

> _______________________________________

D>

>

> ____________________________

> ________________________

> ____________________

D —

S ——

> _________

> _____

>_.

B T e
EEEEEEE D e
> ___
S>——————errrrrrrrrrrrrrr e -

D

> __

> __

##
#
##
##
##
##
##
#
##
##
##
##
#
##
##
##
##

plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:
plot:

[2,4]
[2,5]
[3,1]
[3,2]
[3,3]
[3,4]
[3,5]
[4,1]
[4,2]
[4,3]
[4,4]
[4,5]
[5,1]
[5,2]
[5,3]
[5,4]
[5,5]

Corr: 0.73

Tau U
Corr: 0.59
tx: 0.47
gx: 0.61

Corr: 0.70
tx: 0.45
gx: 0.75

GLMM Logit
Corr: 0.83
tx: 0.67
gx: 0.89

GLMM Percent
Corr: 0.80
tx: 0.65
gx: 0.84

Hﬂp

Corr: 0.88
tx: 0.76
gx: 0.88

Corr: 0.93
tx: 0.80
gx: 0.94

ONd

m Corr: 0.67
tx: 0.50
gx: 0.68

Corr: 0.77
tx: 0.69
gx: 0.76

0.25-%" & o ©
0.00- o®
10.0-

8
°
TS

% o o &

5.0-
-
0.0-

(&)

Corr: 0.92
tx: 0.84
gx: 0.94

(¢]

1.00-
0.75- @
0.50 -

0.25- &

000-& ..., oaoi... | ® 08:.:?‘"

0 510152025303

°
°
1)
&®
)
%
® o
0o0®
A

L

13

n neL

ubo71 WNTO

lusdiad NIN1D

	Introduction
	Setup
	Load packages
	Load effect size functions
	Read in data

	Calculate effect sizes
	dBR
	PMG
	Tau-U
	Bayesian Mixed-effects models
	Blocked Treated
	Blocked Generalization
	Random Treated
	Random Generalization

	Pull the effect sizes together to create a correlation plot
	Plot comparisons

