
S1. Supplemental Materials Part 1
Reproducibility in small-N treatment research: a tutorial using examples from aphasiology

Introduction

This document details the code needed to reproduce the analysis in section 1 of the manuscript. For batch

calculations of effect sizes across participants see part 2.

Setup

Load packages and functions

# Uncomment and run this line to install packages if needed
# Some packages are not used to generate the .pdf, but are used for table generation
# install.packages(c("here", "SingleCaseES", "lme4",
# "emmeans", "brms", "tidybayes", "ggdist", "tidyverse", "flextable", "officer"))

# Instructions for installing RStan are here:
# https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started

library(here) # for locating files
library(SingleCaseES) # calculating SMD, Tau-U
library(lme4) # frequentist mixed-effects models
library(emmeans) # estimating effect sizes from lme4
library(brms) # bayesian mixed-effects models
library(tidybayes) # estimating effect sizes from brms
library(ggdist) # Visualizing posterior distributions
library(tidyverse) # data wrangling and plotting
library(flextable) # creating tables
library(officer) # saving to word

# set a seed for reproducibility
set.seed(42)
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Read in data

Note that the current setup uses RStudio R projects (https://support.rstudio.com/hc/en-us/articles/

200526207-Using-RStudio-Projects). One of the features of R projects is that the working directory is

automatically set to the project root (the folder with the .Rproj). A discussion of R projects can be found

at https://www.tidyverse.org/blog/2017/12/workflow-vs-script/. In this case here("study-data") refers

to the /study-data folder inside the project.

# create a list of files
files <- list.files(

here("data"), # look in the study-data folder
full.names = TRUE, # use the full paths of the files
pattern = ".csv", # only read in .csv files
recursive = TRUE) # include files within subfolders

# read in the files and combine them together
# map_df takes a function, in this case read_csv().
# show_col_types suppresses output since we're reading in many files
df <- files %>%

map_dfr(read_csv, show_col_types = FALSE)

Preview the data

head(df)

## # A tibble: 6 x 11
## participant condi~1 phoneme itemT~2 phase session item trials spt2017 respo~3
## <chr> <chr> <chr> <chr> <chr> <dbl> <chr> <dbl> <chr> <dbl>
## 1 P1 blocked pr tx base~ 1 pr-1 10 pre 0
## 2 P1 blocked pr tx base~ 1 pr-12 10 pre 0
## 3 P1 blocked pr tx base~ 1 pr-4 10 pre 0
## 4 P1 blocked pr tx base~ 1 pr-15 10 pre 0
## 5 P1 blocked pr tx base~ 1 pr-5 10 pre 0
## 6 P1 blocked pr tx base~ 1 pr-7 10 pre 0
## # ... with 1 more variable: n_baselines <dbl>, and abbreviated variable names
## # 1: condition, 2: itemType, 3: response
## # i Use ‘colnames()‘ to see all variable names
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Table 1: Data variables and their description

Variable Description
participant de-identified participant ID
condition probe schedule (blocked or random)
phoneme target_phoneme
itemType item condition (treatment or generalization)
phase treatment phase
session session number from Wambaugh 2017
item item identifier
trials number of items in the list (per phoneme)
spt2017 phase used to calcualte effect sizes in Wambaugh et al., 2017
response accuracy of participant response
n_baselines Number of baseline sessions

Case example: Participant 10

Filter data for Participant 10

Starting from the entire dataset, filter for participant 10, treated items, and the blocked condition. Then

to calculate session-level data (the number of correct responses per session), group by session, and use the

summarize function to calculate the number of correct responses per session. The group_by function also

includes phase and spt2017 because we want to keep these variables in the summary data frame, but their

addition doesn’t affect grouping. The .groups argument removes the grouping after summarize.

P10 <- df %>%
# filter for participant 10, treated condition, blocked condition
filter(participant == "P10",

itemType == "tx",
condition == "blocked") %>%

# calculate the sum for each level of session, phase and spt2017
group_by(session, phase, spt2017) %>%
summarize(sum_correct = sum(response), .groups = "drop")

Plot performance over time

Plotting data from participant 10. First, we select only the baseline and treatment phases (ignoring the

washout and maintenance phases for the purpose of this paper). The we create a dummy variable reflecting

whether or not the session was included in the SMD/PMG calculations. Finally, we use the {ggplot2}
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package to plot the data. A recent primer on {ggplot2} for researchers unfamiliar with R can be found here:

https://doi.org/10.1177/25152459221074654

p1 = P10 %>%
# filter for baseline and treatment phases
filter(phase == "baseline" | phase == "treatment") %>%
# create a new variable called Measure that has a value of
# include if spt2017 is not an NA value and exclude if it is.
# the levels argument indicates that exclude should be
# the first level of the factor.
mutate(Measure = factor(

ifelse(!is.na(spt2017), "include", "exclude"),
levels = c("exclude", "include"))) %>%

# create a plot with session on the x axis, percent
# correct on the y axis, and group by phase
ggplot(aes(x = session, y = sum_correct/20, group = phase)) +
# add points to the graph
geom_point(aes(alpha = Measure), size = 3) +
# add a line to the graph
geom_line(alpha = 0.5) +
# add a vertical line where x = 7
geom_vline(aes(xintercept = 7), linetype = "dashed") +
scale_x_continuous(breaks = seq(0,30,5)) +
ylim(0, 1) +
scale_alpha_discrete(range = c(0.35, 0.9)) +
labs(title = "Participant 10, treated words, blocked condition",

caption = "Dark circles represent data points used to calculate
the within-case standardized mean difference in Wambaugh et al.,
(2017)",
y="Percent Correct") +

guides(alpha = "none")
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Dark circles represent data points used to calculate
       the within−case standardized mean difference in Wambaugh et al.,

       (2017)
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Within-case standardized mean difference

There are any number of ways to calculate the within case standardized mean difference using R code.

In this example, we have used the SMD() function from the established package {SingleCaseES} by James

Pustejovsky because it includes additional functions that may be of interest to researchers in aphasiology.

Additionally, we do not show all information returned by the function, which also includes a 95% confidence

interval, as it is not clear that this confidence interval applies to the the dBR modification of the original

within-case standardized mean difference.

dBR = xB − xA

SA

A = P10 %>% filter(spt2017 == "pre") %>% pull(sum_correct)
B = P10 %>% filter(spt2017 == "post") %>% pull(sum_correct)

SMD(A_data = A, B_data = B)

## ES Est SE CI_lower CI_upper baseline_SD
## 1 SMD 11.46566 3.283023 5.031052 17.90027 1.095445

Proportion of potential maximal gain

There is no R package that includes a function to calculate PMG to our knowledge. However, creating such

a function is relatively straightforward. A function that calculates PMG similar to the SMD() function from

the {SingleCaseES} package might take the following form, with an additional argument for the number of

items treated (nitems). The function calculates the mean of the A phase and B phase, and then calculates

and returns the PMG value from the same data as dBR above.

PMG = xB − xA

nitems − xA

# the function is named PMG and takes 3 arguments:
# vectors of the a_data and b_data, and
# a single number indicating how many items were treated
PMG <- function(a_data, b_data, nitems){

mean_a <- mean(a_data) # calculate mean of a_data
mean_b <- mean(b_data) # calculate mean of b_data
pmg <- (mean_b-mean_a)/(nitems-mean_a) # calculate PMG
return(pmg) # return the PMG value.
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}

PMG(a_data = A, b_data = B, nitems = 20)

## [1] 0.9127907

Tau-U

The Tau-U family of effect sizes (and several other non-overlap measures) can be calculated using the

{SingleCaseES} package. In this case, we use all data summarized in the P10 data frame (and not just the

data used to calculate dBR).

First, we estimate the trend line during the baseline phase, which can be generated by creating a simple

linear model using the lm() function. The model includes the number of correct responses as the dependent

variable and the session number as the independent variable. The session coefficient reflects the slope during

the baseline phase. The coef() function simple extracts the model coefficients.

P10 %>%
filter(phase == "baseline") %>%
lm(data = ., sum_correct~session) %>%
coef()

## (Intercept) session
## 2.133333 0.200000

The Tau() and Tau_U() functions take the same data structure as the SMD() and PMG() functions above.

Using the conservative benchmark of 0.33 recommended by Lee and Cherney (2018), we would calculate

TauAvs.B as the slope of the baseline phase is only 0.2 (from the result above). To calculate TauAvs.B , we

can use the Tau() function.

A = P10 %>% filter(phase == "baseline") %>% pull(sum_correct)
B = P10 %>% filter(phase == "treatment") %>% pull(sum_correct)

Tau(A_data = A, B_data = B)

## ES Est SE CI_lower CI_upper
## 1 Tau 1 0.02710291 1 1

However, if we had elected to correct for baseline trends and use TauAvs.B−trendA, we can use the similar

Tau_U() function.
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Tau_U(A_data = A, B_data = B)

## ES Est
## 1 Tau-U 0.95

Mixed-effects model-based effect sizes

The mixed-effects model example for participant 10 uses item-level data, so we need to create a new dataframe

for this model. As discussed in the manuscript, the model formula is based on a structure from Huitema &

McKean (2000).

Yt = β0 + β1Tt + β2Dt + β3[Tt − (n1 + 1)]Dt + ϵt

The DV is predicted by the model intercept, baseline slope, level change, and slope change parameters.

After selecting data from participant 10, the coefficients are created by:

• setting baseline_slope equal to the session variable

• level_change is a dummy variable, 0 during baseline and 1 during treatment

• slope_change is created by subtracting the number of baselines plus 2 from the baseline slope value,

and then multiplying the result with the level_change variable. Typically, if probing every session,

the formula calls for subtracting the number of baselines plus 1. However, because Wambaugh et al.,

(2017) used intermittent probing schedules, and probed every other treatment session starting at the

second, we need to add 2 to the number of baselines to ensure that the slope change variable starts at

0 on the first recorded treatment probe.

P10 <- df %>%
filter(participant == "P10",

condition == "blocked",
itemType == "tx",
phase == "baseline" | phase == "treatment") %>%

mutate(baseline_slope = session,
level_change = ifelse(phase == "baseline", 0, 1),
slope_change = (baseline_slope - (6+2))*level_change,
level_change = as.factor(level_change))

The resulting matrix looks as follows:
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phase baseline_slope level_change slope_change
baseline 1 0 0
baseline 2 0 0
baseline 3 0 0
baseline 4 0 0
baseline 5 0 0
baseline 6 0 0
treatment 8 1 0
treatment 10 1 2
treatment 12 1 4
treatment 14 1 6
treatment 16 1 8
treatment 18 1 10
treatment 20 1 12
treatment 22 1 14
treatment 24 1 16
treatment 26 1 18

Manuscript Figure 2. visualizes each parameter in this model structure. The code can be found in the .Rmd

file, and is omitted from the pdf due to its length.
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The model formula can be expressed as follows:
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responsei ∼ Binomial(n = 1, probresponse=1 = P̂ )

log
[

P̂

1 − P̂

]
= αj[i] + β1j[i]Tt + β2j[i]Dt + β3j[i][Tt − (n1 + 1)]Dt

αj

β1j

β2j

β3j


∼ N





µαj

µβ1j

µβ2j

µβ3j


,



σ2
αj

ραjβ1j
ραjβ2j

ραjβ3j

ρβ1jαj
σ2

β1j
ρβ1jβ2j

ρβ1jβ3j

ρβ2jαj ρβ2jβ1j σ2
β2j

ρβ2jβ3j

ρβ3jαj
ρβ3jβ1j

ρβ3jβ2j
σ2

β3j




, for item j = 1, . . . ,J

The first line of the equation indicates that the dependent variable takes a binomial distribution. The second

line represents the extension of the Huitema & McKean (2000) model to the hierarchical case, where each

fixed effect is estimated for each item, j[i]. The third line of the equation represents the random effect

structure, indicating that the effect of each fixed effect (baseline slope, level change, and slope change) are

allowed to vary for each item.

The following shows how we arrived at the final model for P10

1. First, we fit the maximal random effects structure. However, the model did not converge.

mod1 <-
glmer(

# fixed effects
response ~ baseline_slope + level_change + slope_change +
# random effects
(1 + baseline_slope + level_change + slope_change | item),

data = P10,
family = binomial)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## unable to evaluate scaled gradient

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge: degenerate Hessian with 1 negative eigenvalues

2. Second, we tried specifying a different optimizer, following recommendations that can be found at

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#convergence-warnings.

mod1 <-
glmer(response ~ baseline_slope + level_change + slope_change +

(1 + baseline_slope + level_change + slope_change | item),
data = P10,
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family = binomial,
# for model convergence
control = glmerControl(optimizer="bobyqa"))

We can now examine the model summary:

summary(mod1)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: response ~ baseline_slope + level_change + slope_change + (1 +
## baseline_slope + level_change + slope_change | item)
## Data: P10
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 249.5 302.3 -110.8 221.5 306
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.2995 -0.2462 0.0202 0.1563 3.6534
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## item (Intercept) 4.5354 2.1296
## baseline_slope 0.3359 0.5795 -0.75
## level_change1 5.6515 2.3773 0.34 -0.01
## slope_change 0.8646 0.9298 0.66 -0.97 -0.14
## Number of obs: 320, groups: item, 20
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.70900 1.33242 -2.033 0.042 *
## baseline_slope 0.01742 0.33249 0.052 0.958
## level_change1 2.50788 1.69433 1.480 0.139
## slope_change 0.39217 0.39651 0.989 0.323
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) bsln_s lvl_c1
## baselin_slp -0.861
## level_chng1 0.535 -0.723
## slope_chang 0.761 -0.916 0.499

We note that in this case, further reducing the random effects structure often returns a significant result

for the level_change parameter, demonstrating how our choice of random effect structure can influence the

statistical significance of model parameters. For this reason, we stress that researchers are forthcoming
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of the model modifications made from the initial maximal random effect structure and also report what

modifications result in parameters changing in significance.

Calculating an overall effect size for this participant requires contrasting performance either at the end of

treatment with and without the level change and slope change parameters, or contrasting performance at

the end of treatment with performance at the end of baseline. The former option assumes that any baseline

trend would have continued throughout the treatment phase in the absence of treatment, is typically more

conservative.

While there is a small, empirical baseline slope in this data, it may be reasonable to consider that this

slope is largely driven by lower performance on the second probe session, and that performance in baseline

sessions 3-6 are stable, and therefore estimate the difference in performance from the end of baseline to the

end of treatment. Criteria for such decisions should ideally be made a-priori if possible, and reported in

publications regardless.

1. First, we generate the marginal means for each combination of baseline slope, level change, and slope

change.

# setup marginal means
#
marginal_means = emmeans(

# object refers to the glmer model object
object = mod1,
# spects refers to the model coefficients we're interested in
specs = c("baseline_slope", "level_change", "slope_change"),
# at indicates the values of the coefficients we're interested in
at = list(

baseline_slope = c(7, 26),
level_change = c("0", "1"),
slope_change = c(0, 19)

)
)

marginal_means

## baseline_slope level_change slope_change emmean SE df asymp.LCL asymp.UCL
## 7 0 0 -2.5870 1.36 Inf -5.252 0.0782
## 26 0 0 -2.2560 7.53 Inf -17.010 12.4976
## 7 1 0 -0.0792 1.20 Inf -2.427 2.2684
## 26 1 0 0.2519 6.39 Inf -12.263 12.7672
## 7 0 19 4.8641 6.46 Inf -7.801 17.5290
## 26 0 19 5.1952 3.06 Inf -0.803 11.1928
## 7 1 19 7.3720 7.35 Inf -7.041 21.7847
## 26 1 19 7.7030 2.49 Inf 2.819 12.5873
##
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## Results are given on the logit (not the response) scale.
## Confidence level used: 0.95

2. This returns a table of all possible comparisons, and we are only interested in contrasting the first row

(beginning of treatment) with the last row (end of treatment). After selecting these two rows, we can

then contrast their estimates.

# code to select first and last rows
# The 1 indicates that the row should be selected
# There are 8 numbers corresponding to the 8 possible comparisons above
A = c(1, 0, 0, 0, 0, 0, 0, 0)
B = c(0, 0, 0, 0, 0, 0, 0, 1)

# contrast the marginal means
# infer argument returns a confidence interval and p value if
# both are set to TRUE.
contrast(marginal_means,

method = list("Unadjusted effect size" = B-A),
infer = c(TRUE, TRUE))

## contrast estimate SE df asymp.LCL asymp.UCL z.ratio p.value
## Unadjusted effect size 10.3 3.1 Inf 4.22 16.4 3.322 0.0009
##
## Results are given on the log odds ratio (not the response) scale.
## Confidence level used: 0.95

We could also make the more conservative assumption that any baseline trend continues by choosing the

second row where baseline slope is set to the last treatment session.

# code to select first and last rows
# The 1 indicates that the row should be selected
A = c(0, 1, 0, 0, 0, 0, 0, 0)
B = c(0, 0, 0, 0, 0, 0, 0, 1)

# contrast the marginal means
# infer argument returns a confidence interval and p value if
# both are set to TRUE.
contrast(marginal_means,

method = list("Unadjusted effect size" = B-A),
infer = c(TRUE, TRUE))

## contrast estimate SE df asymp.LCL asymp.UCL z.ratio p.value
## Unadjusted effect size 9.96 8.51 Inf -6.71 26.6 1.171 0.2417
##
## Results are given on the log odds ratio (not the response) scale.
## Confidence level used: 0.95
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Notice that there is much greater uncertainty in this contrast, evident by the increase in standard error, and

as a result the p-value is no longer significant.

Group-level model

We can extend this individual model to all participants, still focusing on treated items in the blocked

condition. First, we create a new data frame that includes all participants.

df_glmm <- df %>%
# select the correct phase, condition, and itemType
filter(phase == "baseline" | phase == "treatment",

condition == "blocked",
itemType == "tx") %>%

# create the Huitema model parameters
mutate(baseline_slope = session,

level_change = ifelse(phase == "baseline", 0, 1),
slope_change = (baseline_slope - (n_baselines+2))*level_change,
level_change = as.factor(level_change))

Then we can start again with a relatively maximal random effect structures, noting that we could also include

random slopes for items. However, it is unlikely that such a model structure could be supported by the data.

In this case we have chosen to include the most theoretically important random effects (Matsucheck, 2018)

that we expect to be supported by the data. A formula for the model is:

responsei ∼ Binomial(n = 1, probresponse=1 = P̂ )

log
[

P̂

1 − P̂

]
= αj[i],k[i] + β1k[i](baseline_slope) + β2k[i](level_change1) + β3k[i](slope_change)

αj ∼ N
(

µαj , σ2
αj

)
, for item j = 1, . . . ,J

αk

β1k

β2k

β3k


∼ N





µαk

µβ1k

µβ2k

µβ3k


,



σ2
αk

ραkβ1k
ραkβ2k

ραkβ3k

ρβ1kαk
σ2

β1k
ρβ1kβ2k

ρβ1kβ3k

ρβ2kαk
ρβ2kβ1k

σ2
β2k

ρβ2kβ3k

ρβ3kαk
ρβ3kβ1k

ρβ3kβ2k
σ2

β3k




, for participant k = 1, . . . ,K

The model takes a little longer to run, and returns a convergence warning

mod2 <-
glmer(response ~ baseline_slope + level_change + slope_change +

(1 + baseline_slope + level_change + slope_change | participant) +
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(1|item),
data = df_glmm,
family = binomial)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.088281 (tol = 0.002, component 1)

Again, we change the optimizer.

mod2 <-
glmer(response ~ baseline_slope + level_change + slope_change +

(1 + baseline_slope + level_change + slope_change | participant) +
(1|item),

data = df_glmm,
family = binomial,

control = glmerControl(optimizer = "bobyqa"))

Since the model appears to have converged, we can examine the model results

summary(mod2)

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: response ~ baseline_slope + level_change + slope_change + (1 +
## baseline_slope + level_change + slope_change | participant) +
## (1 | item)
## Data: df_glmm
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 5652.2 5755.8 -2811.1 5622.2 7385
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -8.1144 -0.3551 -0.1630 0.3241 13.5509
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## item (Intercept) 1.611095 1.26929
## participant (Intercept) 0.404805 0.63624
## baseline_slope 0.002648 0.05146 0.41
## level_change1 2.390619 1.54616 0.18 0.86
## slope_change 0.007304 0.08546 -0.78 -0.54 -0.52
## Number of obs: 7400, groups: item, 322; participant, 20
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.44259 0.20649 -16.672 < 2e-16 ***
## baseline_slope 0.07624 0.01883 4.050 5.13e-05 ***
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## level_change1 0.85948 0.39756 2.162 0.030628 *
## slope_change 0.09124 0.02582 3.534 0.000409 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Correlation of Fixed Effects:
## (Intr) bsln_s lvl_c1
## baselin_slp -0.161
## level_chng1 0.096 0.310
## slope_chang -0.192 -0.666 -0.363

The summary table shows us there there are statistically significant effects for all three parameters: a small

but significant trend at baseline, a fairly substantial level change on average, and an increase in slope from

baseline that is slightly more than double the initial average trend. We also note that there there is much

more variation in the level change parameter between participants relative to the baseline slope and slope

change parameters. Finally, the correlation of fixed effects shows a positive association between individuals

baseline trend and their level change, but a negative association between individuals baseline trend and slope

change and level change.

We can calculate an overall effect size using the same approach as the individual model. In this case, we

assume the median number of baseline sessions (11) and treatment sessions (20)

# setup marginal means
#
marginal_means = emmeans(

object = mod2,
specs = c("baseline_slope", "level_change", "slope_change"),
at = list(

baseline_slope = c(11, 31),
level_change = c("0", "1"),
slope_change = c(0, 20)

)
)

marginal_means

## baseline_slope level_change slope_change emmean SE df asymp.LCL asymp.UCL
## 11 0 0 -2.6040 0.268 Inf -3.1289 -2.07906
## 31 0 0 -1.0792 0.587 Inf -2.2294 0.07090
## 11 1 0 -1.7445 0.545 Inf -2.8120 -0.67696
## 31 1 0 -0.2197 0.814 Inf -1.8147 1.37518
## 11 0 20 -0.7791 0.393 Inf -1.5503 -0.00788
## 31 0 20 0.7457 0.410 Inf -0.0586 1.54996
## 11 1 20 0.0804 0.480 Inf -0.8613 1.02206
## 31 1 20 1.6051 0.581 Inf 0.4668 2.74346
##
## Results are given on the logit (not the response) scale.
## Confidence level used: 0.95
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Because the baseline trend, on average, was statistically reliable, we calculated an overall effect size assuming

that it would have continued in the absence of treatment.

# code to select first and last rows
# The 1 indicates that the row should be selected
A = c(0, 1, 0, 0, 0, 0, 0, 0)
B = c(0, 0, 0, 0, 0, 0, 0, 1)

# contrast the marginal means
# infer argument returns a confidence interval and p value if
# both are set to TRUE.
contrast(marginal_means,

method = list("Unadjusted effect size" = B-A),
infer = c(TRUE, TRUE))

## contrast estimate SE df asymp.LCL asymp.UCL z.ratio p.value
## Unadjusted effect size 2.68 0.525 Inf 1.66 3.71 5.112 <.0001
##
## Results are given on the log odds ratio (not the response) scale.
## Confidence level used: 0.95

This results in a statistically reliable group effect size of 2.7 logits. Given that the group model suggests a

starting place of only around 3% (found by converting logits to percentage plogis(-3.44)), this indicates

a gain of about 35 percentage points on average can be attributed to the level and slope changes. We can

estimate change in percentage points by adding the intercept, the baseline slope times an average number of

baseline sessions, and the predicted change, converting to the predicted percent correct, and then subtracting

the percent correct at baseline plus the baseline change: plogis(-3.44 + 0.07*5 + 2.68)-plogis(-3.44

+ 0.07*5). However, we’re not aware of a straightforward method of estimating individual effect sizes and

confidence intervals using the frequentist approach.

Bayesian Mixed effects models

Bayesian mixed-effects models can be used in the same fashion as model 2 above to obtain both group and

individual effect size estimates. First, a group-level model is estimated.

mod3 <-
brm(

# population level effects
response ~ 0 + Intercept + baseline_slope + level_change + slope_change +
# group level effects

(1 + baseline_slope + level_change + slope_change | participant) +
(1|item),

data = df_glmm,
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family = bernoulli(), # special case of binomial with n=1 trials
iter = 3000, # number of draws per chain
warmup = 1000, # number of draws to toss on "burn in"
chains = 4, # total number of chains
seed = 42, # set a seed
prior = c( # prior distributions

prior(normal(-1, 2), class = b, coef = Intercept),
prior(normal(0, 2.5), class = b)

),
# extra arguments, see rmd file
cores = 4,
file = here("output", "group_brm"),
file_refit = "on_change")

We can check several aspects of model fit and convergence.

1. Traceplots: Note that there are four lines within each plot, representing all the samples from each

Markov Chain Monte Carlo (MCMC) simulation from the above model. There should be no noticeable

variations in the patterns of the estimates across each model. Visual inspection of convergence is

achieved by affirming that the MCMC estimates were consistently sampled from a range of values.

Graphically, this is presented by the horizontal structure in each trace plot. For example, all estimates

of model 3s intercept, b_Intercept fall within a range of about -4 and -2.5 logits. “Spikes” observed in

traceplots are normal, as can be seen in the participant_slope plot. These spikes represent estimates

at the tail end of a probability distribution. Traceplots with positive or negative slopes or sinusoidal

wave shapes do not reflect convergence.

brms::mcmc_plot(mod3, type = "trace")

## No divergences to plot.
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2. Check that the model can successfully re-estimate the data. In this case, we conducted posterior

predictive checks on three statistics that can be estimated from the model. The posterior_predict

function creates n number of posterior distributions, where n is the total number of post warmup

iterations for one MCMC chain. We label these distributions yrep in the code below.

Then, we estimate posterior predictive p-values for the mean, standard deviation, and kurtosis of the n

number of posteriors included in yrep. We note, that this is only one type of method of posterior checking,

and was chosen because graphical posterior predictive checks of the predicted number outcome estimates

from logistic regression models involving a large number of 0s can be misleading.

y = mod3$data$response
yrep = posterior_predict(mod3)
mean_ppc = mean(apply(yrep, 1, mean) > mean(y))
sd_ppc = mean(apply(yrep, 1, sd) > sd(y))
kurtosis_ppc = mean(apply(yrep, 1, e1071::kurtosis) > e1071::kurtosis(y))

print(c(mean_ppc, sd_ppc, kurtosis_ppc))

## [1] 0.506625 0.510625 0.489125
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mean_ppc, sd_ppc, and kurtosis_ppc represent the proportion of mean, standard deviation, and kurtosis

estimates less than the observed estimates of these parameters. The p-value is the proportion of posterior

samples with greater prediction error than the actual data. Low p-values mean worse model fit than expected

if the model were correct. Values near 0.5 are ideal.

3. Rhat statistic should be < 1.05, ideally < 1.01

The rhat stastistic represents the potential scale reduction factor across the split chains, the case of this

model across the four chains. A value of 1.0 represents perfect convergence and estimates between 1 and

1.05, and ideally between 1 and 1.01 represent adequate convergence. Model fitting should be reevaluated

with rhat statistics greater than 1.05.

max(rhat(mod3))

## [1] 1.003422

We can preview the model results using summary() again. Notably, the model estimates are largely similar

to the frequentist model.

summary(mod3)

## Family: bernoulli
## Links: mu = logit
## Formula: response ~ 0 + Intercept + baseline_slope + level_change + slope_change + (1 + baseline_slope + level_change + slope_change | participant) + (1 | item)
## Data: df_glmm (Number of observations: 7400)
## Draws: 4 chains, each with iter = 3000; warmup = 1000; thin = 1;
## total post-warmup draws = 8000
##
## Group-Level Effects:
## ~item (Number of levels: 322)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 1.30 0.08 1.15 1.46 1.00 2366 4243
##
## ~participant (Number of levels: 20)
## Estimate Est.Error l-95% CI u-95% CI Rhat
## sd(Intercept) 0.77 0.23 0.40 1.28 1.00
## sd(baseline_slope) 0.06 0.02 0.03 0.11 1.00
## sd(level_change1) 1.80 0.40 1.12 2.70 1.00
## sd(slope_change) 0.10 0.03 0.05 0.16 1.00
## cor(Intercept,baseline_slope) 0.21 0.33 -0.45 0.79 1.00
## cor(Intercept,level_change1) 0.15 0.28 -0.43 0.65 1.00
## cor(baseline_slope,level_change1) 0.36 0.32 -0.32 0.87 1.00
## cor(Intercept,slope_change) -0.56 0.25 -0.93 0.02 1.00
## cor(baseline_slope,slope_change) -0.37 0.31 -0.85 0.33 1.00
## cor(level_change1,slope_change) -0.22 0.28 -0.72 0.35 1.00
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## Bulk_ESS Tail_ESS
## sd(Intercept) 2463 3834
## sd(baseline_slope) 2559 3731
## sd(level_change1) 3090 4799
## sd(slope_change) 1180 2898
## cor(Intercept,baseline_slope) 1883 3701
## cor(Intercept,level_change1) 1310 2675
## cor(baseline_slope,level_change1) 915 1814
## cor(Intercept,slope_change) 1053 2559
## cor(baseline_slope,slope_change) 954 1958
## cor(level_change1,slope_change) 1657 2921
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept -3.41 0.24 -3.89 -2.96 1.00 2118 3857
## baseline_slope 0.06 0.02 0.02 0.11 1.00 1309 2171
## level_change1 0.90 0.45 -0.01 1.78 1.00 2587 3970
## slope_change 0.11 0.03 0.05 0.17 1.00 1582 2628
##
## Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Finally, we can calculate effect sizes from the model for each individual

To do this efficiently, we wrote a function which takes arguments for the model object, and an argument

we called “adjust” that can be TRUE if we would like to extrapolate the baseline slope through the end of

treatment and FALSE otherwise. The default is FALSE.

The function works be selecting rows for each participant and item in the data and estimating the posterior

distribution for the values in each row.

Then the data is transformed and the posterior distribution at the beginning of treatment (or at the end of

treatment without the level change and slope change parameters) is subtracted from the posterior distribution

at the end of treatment.

The resulting posterior distribution characterized the magnitude of change, the mean or median can be used

as a point estimate and the middle 95% of the distribution is the 95% credible interval.

glmmES = function(fit, adjust = FALSE){

# start with the data that went into the model,
# for each participant and phase (here we just used level_change
# because they are equivalent) make a new variable called last_session
# which is the highest value of the baseline slope coefficient
# then filter for only rows where the baseline slope is
# equal to the highest value in the phase (in other words
# this selects the last baseline and last treatment session).
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# Remove the response column, reduce the data frame to only the
# unique rows
data = fit$data %>%

group_by(level_change, participant) %>%
mutate(last_session = max(baseline_slope)) %>%
filter(baseline_slope == last_session) %>%
select(-response) %>%
distinct()

# If adjust is TRUE, then for each participant,
# set the baseline slope to always equal the highest value
# of baseline slope.
# in other words, we end up with a row where baseline slope
# represents the last treatment session, but level and slope
# change are still zero.
if(adjust){
data = data %>%

group_by(participant) %>%
mutate(baseline_slope = max(baseline_slope))

}

# calculate an effect size in logits or log-odds
# start with the data frame we just created and add
# model draws from the linear/link-level predictor
# change timepoint to entry if level change is
# 0 and exit if 1. Select only the needed columns
# and take the data from long to wide. using pivot_wider
# Then subtract the value for the draw for entry from
# the draw for exit.
# then for each participant, calculate the point
# estimate and interval using point_interval
# the last line just adds a column indicating this effect size is in logits
linepred = data %>%

add_linpred_draws(fit) %>%
ungroup() %>%
mutate(timepoint = ifelse(level_change == 0, "entry", "exit")) %>%
select(timepoint, item, .draw, .linpred, participant) %>%
pivot_wider(names_from = "timepoint", values_from = .linpred) %>%
mutate(ES = exit-entry) %>%
group_by(participant) %>%
point_interval(ES) %>%
mutate(unit = "logit")

# This block does the same thing, except using the expectation of the
# posterior (i.e., in percent correct terms)
epred = data %>%

add_epred_draws(fit) %>%
ungroup() %>%
mutate(timepoint = ifelse(level_change == 0, "entry", "exit")) %>%
select(timepoint, .draw, item, .epred, participant) %>%
pivot_wider(names_from = "timepoint", values_from = .epred) %>%
mutate(ES = exit-entry) %>%
group_by(participant) %>%
point_interval(ES) %>%
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participant ES .lower .upper .width .point .interval unit
P1 2.1895495 -0.3676083 4.988229 0.95 median qi logit
P10 4.0086213 1.5187068 6.748027 0.95 median qi logit
P11 2.9714045 1.5204160 4.609804 0.95 median qi logit
P12 3.0598628 1.9864749 4.130898 0.95 median qi logit
P13 5.8589987 4.3140540 7.506057 0.95 median qi logit
P14 3.9626795 2.6624822 5.335825 0.95 median qi logit
P15 2.2477880 0.6808346 3.828825 0.95 median qi logit
P16 7.2926630 4.4957225 11.309594 0.95 median qi logit
P17 6.2582404 3.5445388 10.266857 0.95 median qi logit
P18 1.5851814 -0.0863041 3.492992 0.95 median qi logit
P19 5.4483097 2.8257044 8.691806 0.95 median qi logit
P2 5.7103733 2.8251632 9.211314 0.95 median qi logit
P20 3.4349465 2.2776165 4.745630 0.95 median qi logit
P3 5.0591621 2.4579499 8.537965 0.95 median qi logit
P4 4.6388253 2.4688143 7.444193 0.95 median qi logit
P5 2.8040056 1.1536990 4.869518 0.95 median qi logit
P6 3.7047279 1.2918042 6.876803 0.95 median qi logit
P7 0.2205605 -2.6562366 2.434720 0.95 median qi logit
P8 2.2802549 -0.1926789 4.786389 0.95 median qi logit
P9 1.1980474 -1.1147377 3.580816 0.95 median qi logit

mutate(unit = "percent")

return(bind_rows(linepred, epred))
}

Here’s how we might use the function, adjusting for baseline slope

bayesian_es = glmmES(mod3, adjust = TRUE)

Examine the results for logits

head(bayesian_es %>% filter(unit == "logit"), 20) %>% kable(format = "latex", booktabs = TRUE) %>%
kable_styling(position = "center")

Examine the results for percent

head(bayesian_es %>% filter(unit == "percent"), 20) %>% kable(format = "latex", booktabs = TRUE) %>%
kable_styling(position = "center")

To convert to odds ratios, exponentiate the logit effect sizes. To convert to number of items correct, multiply

the percent gain by the number of items treated
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participant ES .lower .upper .width .point .interval unit
P1 0.3181775 -0.0483361 0.7443294 0.95 median qi percent
P10 0.4250740 0.0199313 0.8940472 0.95 median qi percent
P11 0.0869928 0.0082954 0.6206214 0.95 median qi percent
P12 0.5262244 0.1291868 0.7416138 0.95 median qi percent
P13 0.8543259 0.5419068 0.9424602 0.95 median qi percent
P14 0.6685233 0.2632803 0.8466362 0.95 median qi percent
P15 0.3431008 0.0433472 0.6799142 0.95 median qi percent
P16 0.8872033 0.5491569 0.9820621 0.95 median qi percent
P17 0.5681732 0.0907430 0.9129990 0.95 median qi percent
P18 0.0834094 -0.0056740 0.3588588 0.95 median qi percent
P19 0.7742871 0.1480239 0.9677798 0.95 median qi percent
P2 0.5197516 0.0352241 0.9583102 0.95 median qi percent
P20 0.4809946 0.0834361 0.7640616 0.95 median qi percent
P3 0.7847071 0.2275039 0.9540422 0.95 median qi percent
P4 0.7240730 0.1448200 0.9362476 0.95 median qi percent
P5 0.4817848 0.0932917 0.7780038 0.95 median qi percent
P6 0.6157490 0.2034815 0.8813546 0.95 median qi percent
P7 0.0327783 -0.2965442 0.5060892 0.95 median qi percent
P8 0.3184706 -0.0086866 0.7888893 0.95 median qi percent
P9 0.1379460 -0.1858118 0.6055480 0.95 median qi percent

sessionInfo()

## R version 4.2.1 (2022-06-23)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Monterey 12.5
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] officer_0.4.3 flextable_0.7.2 forcats_0.5.1 stringr_1.4.0
## [5] dplyr_1.0.9 purrr_0.3.4 readr_2.1.2 tidyr_1.2.0
## [9] tibble_3.1.8 ggplot2_3.3.6 tidyverse_1.3.2 ggdist_3.2.0
## [13] tidybayes_3.0.2 brms_2.17.0 Rcpp_1.0.9 emmeans_1.7.5
## [17] lme4_1.1-30 Matrix_1.4-1 SingleCaseES_0.6.1 here_1.0.1
## [21] kableExtra_1.3.4
##
## loaded via a namespace (and not attached):
## [1] uuid_1.1-0 readxl_1.4.0 backports_1.4.1
## [4] systemfonts_1.0.4 plyr_1.8.7 igraph_1.3.4
## [7] splines_4.2.1 svUnit_1.0.6 crosstalk_1.2.0
## [10] rstantools_2.2.0 inline_0.3.19 digest_0.6.29
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## [13] htmltools_0.5.3 fansi_1.0.3 magrittr_2.0.3
## [16] checkmate_2.1.0 ggbrace_0.1.0 googlesheets4_1.0.0
## [19] tzdb_0.3.0 modelr_0.1.8 RcppParallel_5.1.5
## [22] matrixStats_0.62.0 vroom_1.5.7 xts_0.12.1
## [25] svglite_2.1.0 prettyunits_1.1.1 colorspace_2.0-3
## [28] rvest_1.0.2 haven_2.5.0 xfun_0.31
## [31] jsonlite_1.8.0 callr_3.7.1 crayon_1.5.1
## [34] zoo_1.8-10 glue_1.6.2 gtable_0.3.0
## [37] gargle_1.2.0 webshot_0.5.3 distributional_0.3.0
## [40] pkgbuild_1.3.1 rstan_2.21.5 abind_1.4-5
## [43] scales_1.2.0 mvtnorm_1.1-3 DBI_1.1.3
## [46] miniUI_0.1.1.1 viridisLite_0.4.0 xtable_1.8-4
## [49] proxy_0.4-27 bit_4.0.4 stats4_4.2.1
## [52] StanHeaders_2.21.0-7 DT_0.23 htmlwidgets_1.5.4
## [55] httr_1.4.3 threejs_0.3.3 arrayhelpers_1.1-0
## [58] posterior_1.2.2 ellipsis_0.3.2 pkgconfig_2.0.3
## [61] loo_2.5.1 farver_2.1.1 dbplyr_2.2.1
## [64] utf8_1.2.2 labeling_0.4.2 tidyselect_1.1.2
## [67] rlang_1.0.2 reshape2_1.4.4 later_1.3.0
## [70] munsell_0.5.0 cellranger_1.1.0 tools_4.2.1
## [73] cli_3.3.0 generics_0.1.3 broom_1.0.0
## [76] ggridges_0.5.3 evaluate_0.15 fastmap_1.1.0
## [79] yaml_2.3.5 bit64_4.0.5 processx_3.7.0
## [82] knitr_1.39 fs_1.5.2 zip_2.2.0
## [85] nlme_3.1-157 mime_0.12 projpred_2.1.2
## [88] xml2_1.3.3 compiler_4.2.1 bayesplot_1.9.0
## [91] shinythemes_1.2.0 rstudioapi_0.13 gamm4_0.2-6
## [94] e1071_1.7-11 reprex_2.0.1 stringi_1.7.8
## [97] ps_1.7.1 Brobdingnag_1.2-7 gdtools_0.2.4
## [100] lattice_0.20-45 nloptr_2.0.3 markdown_1.1
## [103] shinyjs_2.1.0 tensorA_0.36.2 vctrs_0.4.1
## [106] pillar_1.8.0 lifecycle_1.0.1 bridgesampling_1.1-2
## [109] estimability_1.4 data.table_1.14.2 httpuv_1.6.5
## [112] R6_2.5.1 promises_1.2.0.1 gridExtra_2.3
## [115] codetools_0.2-18 boot_1.3-28 colourpicker_1.1.1
## [118] MASS_7.3-57 gtools_3.9.3 assertthat_0.2.1
## [121] rprojroot_2.0.3 withr_2.5.0 shinystan_2.6.0
## [124] mgcv_1.8-40 parallel_4.2.1 hms_1.1.1
## [127] grid_4.2.1 class_7.3-20 coda_0.19-4
## [130] minqa_1.2.4 rmarkdown_2.14 googledrive_2.0.0
## [133] lubridate_1.8.0 shiny_1.7.2 base64enc_0.1-3
## [136] dygraphs_1.1.1.6

24


	Introduction
	Setup
	Load packages and functions
	Read in data
	Preview the data

	Case example: Participant 10
	Filter data for Participant 10
	Plot performance over time
	Within-case standardized mean difference
	Proportion of potential maximal gain
	Tau-U
	Mixed-effects model-based effect sizes
	Group-level model

	Bayesian Mixed effects models


