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Supplemental Material S4. Detailed methods and results for Bayesian model fitting, including 
justification of prior assumptions, and checks for convergence, sensitivity, and posterior 
prediction. 
 
Gibbs Sampling 
 The Bayesian framework for model fitting (i.e., estimating ability values from data 
samples) uses probability distributions to describe our confidence in the possible values of each 
ability. Prior distributions describe our confidence in ability values before observing data, and 
these are transformed into posterior distributions, describing the likelihood of each ability value 
after observing data, using Bayes’ theorem. To avoid complicated calculus problems, we employ 
a well-known approximation method known as Gibbs sampling. 

All model fitting and statistical analyses were carried out in MATLAB R2014a (The 
MathWorks, 2014). Bayesian models were specified using the WinBUGS language (Bayesian 
inference Using Gibbs Sampling for Windows; Lunn et al., 2000), and Gibbs sampling was 
executed with the JAGS software (Just Another Gibbs Sampler; Plummer, 2003), which runs 
natively on Linux. The MATJAGS software (Steyvers, 2011) was used to interface MATLAB 
and JAGS. For Bayesian estimation of abilities, we began with assumptions about the prior 
distributions for baseline abilities, and changes in abilities across time were assumed to be 
normally distributed around zero. We then updated these assumptions with the observed data and 
Bayes theorem to create posterior distributions, using Markov Chain Monte Carlo integration 
(Gelman & Shirley, 2011).  

Sampling chains were initialized with values drawn from a standard normal distribution. 
For the MPT model, posterior distributions for model parameters were constructed using four 
chains of 2,000 samples after 1,000 burn-in samples, yielding a total of 8,000 samples of the 
posterior distribution of each participant ability. For the IRT model, posterior distributions for 
model parameters were constructed using four chains of 1,000 samples after 500 burn-in 
samples, yielding a total of 4,000 samples of the posterior distribution of participant ability.  

We constructed posterior samples of the IRT-P(S) change statistic by first converting 
each sample of the latent accuracy parameters at each testing session into a probability of success 
on an item of average difficulty, then taking the difference between the corresponding samples of 
the two testing sessions, yielding a new chain of posterior samples for the change in IRT-P(S). 
We constructed posterior samples of the MPT-P(S) change statistic by first converting each 
sample of the ability parameters at each testing session into a probability of success on an item of 
average difficulty, then taking the product of all probabilities at corresponding samples (i.e., 
within each single sample of posterior ability parameters, without contamination across different 
samples in the chain) to produce a sample of MPT-P(S) on a given testing session, and finally 
taking the difference between the corresponding samples of the two testing sessions, yielding a 
new chain of posterior samples for the change in MPT-P(S). A similar procedure was undertaken 
to produce posterior estimates of changes in MPT-E(D), first calculating MPT-E(D) for each 
sample of ability parameters at a given testing session, and then taking the difference between 
corresponding samples of two different testing sessions to produce a sampling chain of the 
changes in MPT-E(D).  

The means of the posterior samples were taken as point estimates of the summary 
statistics. Credible intervals were constructed by sorting the posterior samples for the quantities 
of interest and taking the 2.5 and 97.5 percentile samples as lower and upper bounds.  
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Convergence Check 
For the MPT model, across both treatment groups, we estimated a total of 864 participant 

variables directly (i.e., the participant abilities at each testing session), and we were interested in 
the derived variables: MPT-P(S), MPT-E(D), and changes in these variables between testing 
sessions at baseline and immediately following completion of therapy (i.e., Weeks 1 and 12). For 
each of these variables, longer posterior sample chains (4,000 samples each) were initially 
plotted and visually inspected for convergence, to estimate a reasonable number of burn-in and 
retained samples (Lee & Wagenmakers, 2014). After determining the default sampling 
parameters, we examined the potential scale reduction factor (𝑅) for each estimated variable; 
values below 1.05 were considered satisfactory (Gelman & Shirley, 2011). The same 
convergence checks were applied to the IRT model estimates of ability. 

Results. Convergence was satisfactory for all IRT model-based quantities of interest 
(max. 𝑅 = 1.006). Convergence was also satisfactory for all MPT model-based quantities of 
interest (max. 𝑅 = 1.003). 

 
Justification of Default Prior Assumptions 

The default prior assumptions were made with the intention of minimizing bias in the 
posterior estimates of the summary statistics. This goal was motivated by the objective Bayes 
approach to defining prior distributions, wherein as few assumptions are made as possible 
(Rouder et al., 2009). For the IRT model, due to the known item heterogeneity in the model, 
prior expectations about the latent probability of a correct response are shifted upward or 
downward based on the known difficulty of the item, meaning that we can only be minimally 
informative about the probability of a correct response on the average difficulty item (or some 
other arbitrary point on the item difficulty scale). To do this, we set the mean of the logit-normal 
prior distribution (i.e., a normal distribution on the logit scale ranging [-inf, +inf]) equal to the 
average item difficulty (-0.18), and we set the standard deviation (i.e., the dispersion) to be 1.7, 
to approximate a uniform distribution on the probability scale.  

Due to the structure of the MPT model, there is a complex relationship between the 
parameters of the prior logit-normal distributions for each of the six latent abilities and the prior 
distribution for the probability of a correct response. We used simulations to explore the effects 
of different logit-normal parameters, taking six random draws, converting them to probabilities 
based on the average difficulty values of the test items, and then taking their product to yield a 
single sample of the prior distribution for the probability of a correct response; this sampling 
procedure was repeated 107 times to produce simulated prior distributions (Supplementary 
Figure S5, top row). It was determined that a mean of 2.5 and standard deviation of 2.8 for all 
latent abilities produced a reasonably diffuse distribution for the probability of a correct 
response. While these values are somewhat arbitrary (i.e., there are other prior assumptions that 
could produce an approximately similar distribution on the probability scale), with enough 
observed data and reasonably plausible prior assumptions, Bayesian estimation and inference is 
largely insensitive to changes in the prior assumptions, as we demonstrate in the sensitivity 
analysis described in the next section. 

Finally, in both models, the longitudinal changes in abilities were assumed to vary 
normally around zero, motivated by the default hypothesis that no real change in the latent 
abilities occurred; to the extent that posterior distributions are shifted away from this prior 
location after observing data, the evidence will support the claim that a real change in abilities 
did occur. Note also that the dependence of later abilities on earlier abilities implements a 
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longitudinal regime that constrains model estimates based on the time-structure of the data, 
rather than assuming that each observation in time is independent from the others.  

 
Sensitivity Check 

We did not investigate the sensitivity of the IRT model parameter estimates to the prior 
specifications. However, for the MPT model, in addition to the default prior assumptions that 
were minimally informative about the probability of a correct response at baseline, we examined 
two other prior specifications for baseline abilities, as well as a different random seed for the 
default specification. First, we specified prior distributions that were minimally informative 
about the probability of success on a latent process with average difficulty. Like the Bayesian 
IRT model, due to the known item heterogeneity, prior expectations about the probability of 
success on latent processes are shifted upward or downward based on the known difficulty of the 
process, meaning that we can only be minimally informative about a single point on the process 
difficulty scale; we chose the average difficulty of all processes as our anchor point. Thus, we set 
the mean of the prior logit-normal distribution to the average difficulty over latent processes 
(-1.8), and we set the standard deviation to 1.7 to approximate a uniform distribution on the 
probability scale (Supplementary Figure S5, second row). Second, we specified informed prior 
distributions based on the descriptive statistics of point estimates from the 90 independent 
participants reported in Walker et al. (2018) who were examined by the same research group that 
conducted the current study (Supplementary Figure S5, bottom row). Sensitivity checks were 
conducted using only the data from Treatment Group 1. 

Results. The coefficients of determination (R2) between parameter point estimates and 
interval estimate widths obtained using different random seeds or specifications of the prior 
distributions were all greater than .98. These results indicate that the point estimates and interval 
widths that are used for inference can be obtained using a variety of reasonable starting 
assumptions. 

 
Posterior Predictive Check 

To assess the MPT model’s fit to the data, we performed posterior predictive checks and 
examined posterior predictive error. The logic of the posterior predictive check is that a model’s 
estimated parameters specify some distribution of possible data that might be observed, and, 
ideally, the data that are actually observed should appear to be a reasonable sample from that 
distribution. To calculate a posterior predictive p-value, a random draw is taken from the 
posterior distribution of parameter values (i.e., a posterior sample from the sampling chain used 
for fitting); new data are randomly generated from the model using these parameter values; and 
the prediction error for this new data (i.e., the difference between the data’s response type 
frequencies and the model’s expected values) is compared with the prediction error for the 
observed data. This procedure is repeated for each posterior sample in the chain, and the 
proportion of new data samples that are closer to the model’s predicted values than the original 
data defines the posterior predictive p-value. A low posterior predictive p-value means that the 
original data do not fit the model’s predictions as well as data sampled directly from the model; 
however, this does not necessarily mean that the model’s fitted parameters are useless for 
making inferences about participants, which requires additional investigations to determine. 
Posterior predictive p-values less than .05 were taken as indicators of poor recovery of the 
response frequencies from the model parameters. We generated posterior predictive p-values 
based on the T1 test statistic proposed by Klauer (2010) for examining recovery of mean 
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response type frequencies. We tested the recovery of participant-wise response frequencies 
summed over items, for each response type separately and for the response type distribution as a 
whole, for each naming test.  

We also examined the posterior predictive error of the fitted model: For individual 
response types, we examined the absolute difference between the observed response type 
proportions in the data and the predicted response type proportions from averaging over samples 
of the posterior predictive data that is generated from the model. For response type distributions, 
we examined the root mean square error between all observed and predicted response type 
proportions. 
 Results. Regarding the fit to response type distributions generated by participants 
(considering all response types together), there were three tests (4%) in Treatment Group 1 with 
posterior predictive p < .05, and there were zero tests (0%) in Treatment Group 2 with posterior 
predictive p < .05. This means that nearly all the model’s prediction accuracies for the observed 
distributions of response-type rates were similar to the model’s prediction accuracies for new 
data that was generated directly from the model. The median RMSE between predicted and 
observed distributions of response rates was 0.6%; the maximum RMSE was 3.3%. Recall that 
the RMSE is the expected prediction error for a randomly selected response type. For 
comparison, when fitting the Foygel and Dell (2000) spreading activation model to response-
type distributions, Schwartz et al. (2006) reported an average RMSE of 2.4%, with 23 of their 94 
participants having RMSE greater than the maximum RMSE reported here for the MPT model. 

With regard to specific response types, there were no tests in either treatment group with 
posterior predictive p < .05 for Correct, Semantic, Formal, Neologism, or No Attempt response 
types, indicating that the prediction accuracies for these observed response rates were similar to 
prediction accuracies for response rates generated directly from the model. For Mixed errors, 
there was a single test (1%) in Treatment Group 1 that had posterior predictive p <.05. For 
Unrelated errors, there were 23 tests (30%) in Treatment Group 1 with posterior p < .05, and 
there were 24 tests (35%) in Treatment Group 2 with posterior p < .05. For Abstruse Neologism 
errors, there were 19 tests (25%) in Treatment Group 1 with posterior p < .05, and there were 12 
tests (18%) in Treatment Group 2 with posterior p < .05. Even though prediction errors were 
sometimes larger than expected if the model had been true for these response types, the median 
prediction error for any response rate was less than 1%; the maximum prediction error for any 
response rate in any participant was 6.1%, for Abstruse Neologisms. The predicted rates of 
Abstruse Neologism and Unrelated errors strongly depend on assumptions about the probability 
of a phonological error resulting in a real word. Because these probabilities were estimated from 
an independent cohort with much lower rates of speech motor impairments, these probabilities 
may have been overestimated. Nevertheless, within the bounds of the model’s current 
assumptions, the inadequate model fits in this minority of cases do not by themselves suggest 
that the parameter estimates are biased or useless. Because the overall model fit was deemed 
generally adequate for most participant-level response types and distributions, and to investigate 
the general utility of the estimated parameters and summary measures, no participants or items 
were excluded in the subsequent analyses based on posterior predictive checks. 
 


