
Supplemental material, Wong et al., “Neural Speech Encoding in Infancy Predicts Future Language and Communication Difficulties,” AJSLP, 
https://doi.org/10.1044/2021_AJSLP-21-00077  

Supplemental Material S1. 

 
SI Methods 
 
Experimental Protocol 
Continuous EEG was collected from Ag/AgCl electrodes at Cz, M1 (left mastoid) and M2 (right mastoid) 
at a 20 kHz sampling rate (Compumedics, Australia) with CPz as a reference and Fpz as a ground. During 
EEG recording the inter-electrode impedances were maintained at less than or equal to 1 kΩ. Cz data were 
re-referenced offline with the average of two mastoids for the subsequent analysis. The analysis was 
performed on one electrode (Cz) in MATLAB 9.2 (R2017a) with custom-made scripts using built-in 
functions of the Signal Processing Toolbox and the Statistics and Machine Learning Toolbox. Two different 
analysis pipelines were used for FFR and LLR extraction from the same raw EEG data. For FFR extraction, 
the data were filtered with an 8-order Butterworth 80-1500 Hz bandpass filter. The epochs were extracted 
around the stimulus onset time from -50 to 225 ms using a ± 25 μV artifact rejection criterion after baseline-
correction at the 50-ms pre-stimulus interval. For LLR extraction, the data were filtered with a 4-order 
Butterworth .1-40 Hz bandpass filter and down-sampled to 3 kHz. Other LLR studies have also used 
this frequency range (e.g., Bishop, Hardiman, Uwer, & Von Suchodoletz, 2007; Paquette et al., 
2015; Polich, Aung, & Dalessio, 1988). The epochs were extracted around the stimulus latency time 
from -100 to 500 ms using a ± 100 μV artifact rejection criterion after baseline-correction at the 100-ms 
pre-stimulus interval. Seven percent of all EEG recordings were considered as unsuccessful due to the large 
amount of artifacts. 
 
Experimental Stimuli 
Three maximally distinctive native and non-native tones that have been used before (Maggu, Zong, Law, 
& Wong, 2018) were chosen as the speech stimuli based, attesting to their validity for obtaining robust FFR 
responses. The stimuli were spoken by a phonetically-trained female speaker, and were duration and 
amplitude normalized. The Fundamental Frequency (F0) ranges for the Native /ga2/, Native /ga4/ and Non-
Native /ga3/ were respectively 182-278 Hz, 152-187 Hz, and 142-177 Hz. These three tones are described 
as 25, 21, and 214, respectively, according to Chao’s nomenclature (Chao, 1930). The stimuli were 
presented to the participants via Audio CPT module of STIM2 (Compumedics, Australia). One thousand 
repetitions for each of the three tones were delivered in three separate blocks to both ears of the participant 
with fixed inter-stimulus interval (ISI) and alternating polarity. The presentation rate was fixed at either 
~1.5 stimulus or ~4 stimuli per second, resulting in one of two possible ISIs for each participant; 
consequently Stimulus-onset-asynchrony (SOA, i.e., ISI plus stimulus duration) was included in 
classification features (see below). 
 
EEG Measures (Short and Long-Latency Measures) 
The 69 EEG measures are derived from 23 measures for each of the three speech stimuli, including 17 
short- and 4 long-latency measures as well as 2 general EEG measures. These measures are standard for 
auditory-evoked EEG (Akhoun et al., 2008; Anderson, Parbery-Clark, White-Schwoch, & Kraus, 2015; 
Krishnan, Xu, Gandour, & Cariani, 2004; Näätänen & Picton, 1987; Russo, Nicol, Musacchia, & Kraus, 
2004; Skoe & Kraus, 2010; Skoe, Krizman, Anderson, & Kraus, 2015). 
 
1. Short-Latency measures  

1.1. Number of good FFR trials was defined as the number of trials after the procedure of artifact 
rejection that removed every trial with values outside ±25 μV range in case of FFR. 

1.2. FFR Signal-to-noise ratio was calculated as the dB-transformed ratio of the root-mean-square 
(RMS) power of the 170-ms post-stimulus to 50-ms pre-stimulus interval of the FFR waveform.  

1.3. Noise RMS was the RMS of the 50-ms pre-stimulus interval of the FFR waveform. 
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1.4. Lower-range Fast Fourier transform (FFT) power was calculated as mean over 120-260-Hz 
interval of the whole-epoch power spectrum of the averaged across trials FFR in dBmV. This 
range corresponds to the fundamental frequency (F0) a.k.a. first harmonic of our stimuli. 

1.5. Middle range FFT power was calculated as mean over 260-750-Hz interval of the whole-epoch 
power spectrum of the averaged across trials FFR in dBmV. This range corresponds to the 
second and third harmonics of our stimuli. 

1.6. Higher-range FFT power was calculated as mean over 750-1200-Hz interval of the whole-epoch 
power spectrum of the averaged across trials FFR in dBmV. This range corresponds to the fourth 
and higher harmonics of our stimuli. 

1.7. Lower-range Inter-trial phase coherence (ITPC) was calculated as mean over 120-260-Hz 
interval of whole-epoch FFR ITPC. FFR ITPC was calculated as an absolute value of the 
averaged across single-trials FFT that were normalized by their absolute values. 

1.8. Middle -range Inter-trial phase coherence (ITPC) was calculated as mean over 260-750-Hz 
interval of whole-epoch FFR ITPC.  

1.9. Higher-range Inter-trial phase coherence (ITPC) was calculated as mean over 750-1200-Hz 
interval of whole-epoch FFR ITPC.  

1.10. Maximal ITPC was the maximal value across the ITPC periodogram. The ITPC periodogram 
was obtained by combining FFTs in sliding 50-ms Hamming windows in 2-ms steps along the 
FFR epoch. 

1.11. Pitch Strength was calculated as the maximum of the whole-epoch autocorrelation waveform 
excluding the initial peak at 0 ms delay (Fig. 1C).  

1.12. Pitch Tracking was calculated as the correlation between the neural pitch and the auditory stimulus 
pitch. Neural pitch was extracted as the contour connecting the frequencies of the maxima of FFR 
autocorrelogram at each time point. Auditory stimulus pitch was a contour connecting the maxima 
of the stimulus autocorrelogram. Autocorrelograms were built by combining autocorrelation 
curves from the sliding 50-ms windows moved by a 2-ms step along the FFR or stimulus waveform. 

1.13. Pitch Error was calculated as Euclidean distance between the neural pitch and the auditory 
stimulus pitch (see 1.12 for definitions of neural and auditory stimulus pitch).  

1.14. FFR Response Consistency was calculated as a Fisher-transformed averaged correlation between 
the FFRs from two halves of the randomly split data after 300 iterations. 

1.15. Stimulus fidelity was a maximum of cross-correlation between the auditory stimulus and FFR 
waveforms. 

1.16. Stimulus-response delay (also known as neural lag) was the time between the stimulus onset and 
the maximum of cross-correlation between the auditory stimulus and FFR waveforms. 

1.17. FFR peak amplitude was calculated as a global maximum in the 3-25 ms post-stimulus interval 
on the time domain FFR waveform.  
 
 

2. Long-Latency measures 
2.1. Number of good LLR trials was defined as the number of trials after the procedure of artifact 

rejection that removed every trial with values outside ± 100 μV in case of LLR. The number of 
good LLR trials was additionally capped at 600 to avoid the excessive habituation typical for 
LLR. 

2.2. LLR Signal-to-noise ratio was calculated as the dB-transformed ratio of the RMS power of the 
500-ms post-stimulus to 100-0 pre-stimulus interval of the LLR waveform (Fig. 2B).  

2.3. LLR peak amplitude was calculated as the local maximum on the 500-ms post-stimulus interval 
on the time-domain LLR waveform. 

2.4. LLR latency was calculated as latency of the local maximum on the 500-ms post-stimulus 
interval on the time-domain LLR waveform. 
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3. General EEG measures 
3.1. Stimulus-onset-asynchrony (SOA) is time between the onsets of the two adjacent stimuli in the 

sequence. We used two types of protocols, one with SOA 675 ms and another with SOA 268 ms 
that correspond to the inter-stimulus intervals of 500 and 90 ms.  

3.2. The total number of trials was usually 1000 per tone, but there were cases that deviated from this 
number due to unforeseen circumstances (e.g., when a child woke up before the completion of a 
stimulation block). 

 
Model construction procedures (Fig S3). The raw scores collected from the MCDI were converted into 
percentile ranks based on the child’s age and sex. In a two-way classification, participants were classified 
into < or > 25th %tile, and for a three-way classification, < 25th, 25th – 75th, or > 75th %tile. Support vector 
machine (Boser, Guyon, & Vapnik, 1992) was chosen over other machine-learning techniques as it has 
been used successfully in predicting children’s speech outcomes (Feng et al., 2018). The following SVM 
training parameters were chosen in LIBSVM package (Chang & Lin, 2001): C-SVC type of SVM, radial 
basis function kernel, gamma of the kernel 1/number of features, cost 100, no shrinking. Note that although 
the original SVM algorithm was developed for binary classification, the LIBSVM package implements 
multi-class classification with a “one-against-one” method that we used in case of 3-way classification (Hsu 
& Lin, 2002). The classification was cross-validated with a 10-fold cross-validation procedure. At each fold 
of the cross-validation, we trained our SVM classifier on 90% of the data and predicted the outcome with 
the remaining 10% of the data. Stacking the ten outcome sets together produced a predicted-labels vector 
that we compared to the true labels. Accuracy was calculated as the percentage of the correctly classified 
labels to the total number of labels. Sensitivity was calculated as the proportion of the subjects correctly 
classified as low-performers (< 25th %tile) to the total number of the subjects classified as low-performers. 
Specificity was calculated as a proportion of the subjects correctly classified as higher-performers (> 25th 
%tile) to the total number of subjects classified as higher performers. To obtain the receiver-operating curve 
(ROC), we repeated the training and testing procedure with the same SVM parameters, except that epsilon-
SVR was used instead of C-SVC as the model training type. This was done to obtain a smoother ROC. The 
ROC and its area under the curve were calculated with MATLAB function perfcurve. In order to obtain 
statistical significance, the response predictor matrix was put through 10000 iterations of bootstrapping and 
permutation. At each iteration we randomly re-sampled the subjects with replacement (MATLAB function 
randi). This kind of resampling with replacement defines bootstrapping in the statistical literature (Efron, 
1979). We then randomly permuted the outcomes within the matrix so that the predictors no longer 
corresponded to the outcomes. Each of the two matrices, bootstrap and permutation, was trained and tested 
as described above. After 10000 iterations of bootstrapping, permutation and cross-validation, we obtained 
eight distributions of 10000 values for 4 classification quality parameters (accuracy, sensitivity, specificity 
and AUC) and for real (bootstrapped) and permuted labels of the subjects. The significance level (p-value) 
and thus the success of classification was calculated as a proportion of the permuted distribution that fell 
above the median of the real distribution. If the p-value was below .05, we concluded that the classification 
results were above chance level. This procedure is a non-parametric analog of a one-tailed t-test. The same 
procedure was applied for comparison of any other prediction models. It illustrates the advantage of 
applying bootstrapping in combination with permutation statistics over permutation alone. 
 
Table S2 shows the exact number of subjects falling into the three categories (< 25th %tile, 25th–75th %tile, 
and > 75th %tile) of performance for each measure of the MCDI. In general, the obtained distribution 
deviated from the expected distribution (25%, 50% and 25% for the three categories respectively). This for 
the most part was due to fewer participants in the middle (25th–75th %tile) category. Our study is a 
community study with no pre-selection criteria other than those stated in the main text. It is possible that 
those parents who suspected their children to have language difficulties or those who thought their child 
might excel were more interested in our study. 
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SI Results 
Models with SES as an additional non-neural feature 
Socioeconomic status (SES) was measured in this study from all but 3 participant families. We calculated 
SES as Hollingshead four-factor index (Hollingshead, 2011): 
 

SES = 3/2(Maternal Education + Paternal Education) + 5/2(Maternal Occupation + Paternal 
Occupation) 

 
where education is a number between 1 and 7 and occupation is a number between 1 and 9. In the event 
that one of the parents was not currently working, the other parent’s occupation alone was entered into the 
formula. In order to maximize our sample size, the SES value was replaced by the mean for the three 
participating families with missing SES info. Replacement by mean as an instance of multiple imputation 
is preferable to complete case analysis for missing data at random situations like ours (Hughes, Heron, 
Sterne, & Tilling, 2019). SES is an important correlate of child development at the group level (Fernald, 
Marchman, & Weisleder, 2013), though we are not aware of any research studies that have demonstrated 
its reliability in making predictions at the individual child level. Nevertheless, we constructed a set of 
predictive models using SES as an additional non-neural measures, and found that it did not significantly 
enhance the precision of the models without SES as a measure (Fig. S4).  
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Table S1. Summary of participants' demographic information. 

 M Range 
Gestational Age(weeks) 38.8 34-41 
Birth Weight(kg) 3.1 2.18-4.25 
Sex(M/F) 61/57 - 
Age of EEG Testing(months) 3.8 .8-12.4 
Age of Outcome Testing(months) 12.5 8-18 
Age gap between EEG and Outcome Testing 
(months) 8.7 2.8-15.8 

 
 
Table S2. The distribution of subjects across the percentiles of the normed MCDI outcomes.  
χ2 statistics confirmed that for most measures, the obtained distribution deviates from the expected 
distribution. 
 

MCDI Outcome  

N subjects by percentile    

> 25% 25% < < 75% > 75% χ2 p  

Early Gestures 41 43 34 9.2 .0099  
Later Gestures 64 31 23 53.1 3·10-12  
Vocabulary 
Comprehension 44 38 36 15.7 .0004 

 

Vocabulary 
Production 36 59 23 2.4 .29 

 

 
 


