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Supplemental Material S1. Models used in the main analyses and the Markov chain Monte 
Carlo (MCMC) sampling procedure. 
 
Productivity (Modeling Count Data) 

The productivity model described in the Methods section is specified as follows. 

 

𝑈 1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑅𝑈𝐷 1  

log 𝑅𝑈𝐷 1 𝛽 𝛽 𝑎𝑔𝑒 𝛽 𝑠𝑒𝑥  

 𝛽 𝑠𝑒𝑠 𝛽 𝑡𝑏𝑖 𝛼  

𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝜏 , 

(1) 

where 𝛼  represents the random intercept for subject 𝑖, and 𝜏  measures the subject-to-
subject variability (standard deviation) in productivity that is not accounted for by the covariates. 
While we could choose another distribution for the random intercepts, a normal distribution is 
consistent with reasonable data assumptions. This is an example of Poisson regression with 
mixed effects, which is a type of GLMM that is appropriate for many situations in which the 
response is a count. 

The interpretation of the 𝛽 coefficients is similar to linear regression, but on the log scale. 
When we invert the log scale by exponentiating, the parameters introduced in Equation Error! 
Reference source not found.) become highly interpretable as the multiplicative effect of the 
explanatory variables. Because the covariates in our model are centered, the intercept terms 

𝛽  are also interpretable: exp 𝛽 𝑒  is the overall average number of utterances 

(beyond the first utterance) spoken by a person summarizing lecture type 𝑗. Instead of 
interpreting these coefficients directly, we transform them in order to report additive effects, with 
which our audience is perhaps more familiar. For completeness, estimates of the raw 
parameters for all four models are reported in Table 5. For more details on interpreting the 
coefficients on the multiplicative scale, see Agresti and Kateri (2011). 

Whether interpreted on the multiplicative or additive scale, estimating the coefficients 
allows us to discover patterns in productivity relating to each of the demographic covariates, and 
detect the effect of lecture type, thereby answering our questions of interest. Indeed, the 
Poisson regression model is useful for a variety of situations in which counts are the response 
of interest. 

 
Syntactic Complexity (Analyzing Ratios of Counts) 
 
To deal with the multiple utterances per discourse sample, we make a simplifying assumption 
that for each individual (i.e., given each individual’s speech characteristics) the number of 
clauses/words in a given utterance is independent of the number of clauses/words in the other 
utterances of the same discourse sample, which allows us to conclude that the sum of the 
utterance-specific supplemental clauses follows a Poisson distribution with mean equal to the 

sum ∑ 𝑅𝑆 1 𝑈 𝑅𝑆 1 . The complete model is as follows. 

 

𝐶 𝑈 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑈 𝑅𝑆 1  

log 𝑅𝑆 1 𝛽 𝛽 𝑎𝑔𝑒 𝛽 𝑠𝑒𝑥 𝛽 𝑠𝑒𝑠

𝛽 𝑡𝑏𝑖 𝛼  

𝛼 ∼ 𝑁 0, 𝜏 , 

(2) 
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where 𝜏  measures subject-to-subject variability (SD) in syntactic complexity (as measured by 
clauses per utterance) that is not accounted for with the covariates in our model. The model for 
RWU is similar and is specified below. The only difference is the inclusion of the addition term 
𝜖 , which accounts for overdispersion (i.e., unexpectedly large variation for Poisson-distributed 
variables) not detected in any of the other models. 
 

𝑊 𝑈  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑈 𝑅𝑊𝑈 1  

log 𝑅𝑊𝑈 1 𝛽 𝛽 𝑎𝑔𝑒 𝛽 𝑠𝑒𝑥  

 𝛽 𝑠𝑒𝑠 𝛽 𝑡𝑏𝑖 𝛼 𝜖  

𝛼 ∼ 𝑁 0, 𝜏 ; 𝜖 ∼ 𝑁 0, 𝜎 , 

(3) 

 
where 𝜎  measures observation-level variability (SD) in the total word count. Interpretation of 
the coefficients in both of these models is analogous to those for our productivity model. 
 
Lexical Diversity (Analyzing Proportions) 
 
The model for PDW is 
 

 

𝐷 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑊 , 𝑃𝐷𝑊  

logit 𝑃𝐷𝑊 𝛽 𝛽 𝑎𝑔𝑒 𝛽 𝑠𝑒𝑥 𝛽 𝑠𝑒𝑠

𝛽 𝑡𝑏𝑖 𝛽 log 𝛼  

𝛼 ∼ 𝑁 0, 𝜏 , 

(4) 

 
where 𝜏  measures subject-to-subject variability (again measured in SD) not accounted for by 
the demographic, lecture type, and discourse length variables. Note that, as in the Poisson 

regression examples, the random effects 𝛼  are account for the fact that we are observing 
repeated measurements on each subject. 

 The model looks a lot like Equations Error! Reference source not found.) and Error! 
Reference source not found.), and the binomial regression coefficients are interpreted in an 
analogous manner, with a couple of distinctions. Exponentiated coefficients have a similar 
multiplicative interpretation, but the multiplicative effect is on the ratio of the probability of a 
distinct to a repeated word, instead of on the counts directly. Again, we opt for an additive 
interpretation here, but further details on the multiplicative interpretation can be found here 
(Agresti & Kateri, 2011). 

The term 𝛽  is included to account for the effect of the total word count 𝑊  on the 

proportion of distinct words 𝑃𝐷𝑊 .  To maintain interpretability of the intercept terms 𝛽 , we 

are careful to center the covariate log 𝑊 , similar to how we centered the demographic 

covariates. To accomplish this we use log , so that the baseline is a discourse containing 

100 total words – a relatively typical word count in our data set. Thus, exp 𝛽  represents the 

overall mean ratio of distinct to repeated words produced by persons summarizing discourse 𝑗, 
given that there are 100 words in the discourse sample. We expect 𝛽  to be negative, since 

our data suggests that the proportion of distinct words 𝑃𝐷𝑊  generally decreases with larger 

values of 𝑊 . 
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Estimating the regression coefficients in Equation (4) allows us to discover patterns 
relating to each of the demographic covariates, and to detect the effect of lecture type, thereby 
answering our questions of interest relating to lexical diversity. In general, binomial regression is 
useful for a variety of situations in which proportions are of key interest.  
 We evaluate the assumptions of our model via posterior predictive checks. In doing so, 
we find that observed traditional data summaries such as group-specific mean U, SI, MLU, and 
TTR in our dataset fall well within their prediction intervals, and these intervals are largely 
centered on the observed data values, with the exception of some of the very small counts, 
which are difficult to estimate in an unbiased way due to a lower boundary effect. 

Prior Distributions 
 

We would have preferred to elicit informative priors from subject matter experts in order 
to maximize our power to learn interesting parameter values. However, because this is a re-
analysis, and our subject matter expert (JL) had already seen and analyzed the data before the 
present analysis, we resorted to diffuse minimally informative priors to minimize the influence of 
previous results on our current analyses. Our chosen priors are listed in Table 5, along with 
posterior mean and standard deviation. Posterior 95% credible intervals are shown in Table 6. 
The prior for the coefficient parameters are centered at zero, and all prior distributions are 
chosen to cover a substantially broader range than what our subject matter expert saw to be 
reasonable, in order to be on the conservative side. As a sensitivity analysis, we also tried using 
analogous priors whose 95% credible intervals had half the width of the more conservative 
ones, but the results were not at all different, indicating that our chosen priors were sufficiently 
diffuse. 

Having little prior knowledge about the standard deviation of the random effects 
𝜏 , 𝜏 , 𝜏 , 𝜎 , and 𝜏  for this application, we set each to follow a relatively diffuse half-Cauchy 
distribution with location 0 and scale a = 2.5. As a sensitivity analysis, we also tried using a = 1 
and a=10, but the results were practically unchanged, so we kept the moderately diffuse value 
of a = 2.5.   

Fitting the Model 

To estimate posterior distributions of the parameters, we utilize a Markov chain Monte Carlo 
(MCMC) algorithm implemented via STAN software (Stan Development Team, 2018b) 
accessed via the RStudio interface (R Studio Team, 2020; Stan Development Team, 2018a) to 
obtain 30,000 random samples from the posterior distribution of the parameters, after removing 
5,000 from each of three chains as burn-in. As per the default setting in STAN, initial values of 
the MCMC algorithm were selected uniformly at random in the interval (-2, 2) for parameters 
with an unrestricted domain; and for non-negative parameters, a uniform random number was 
chosen in the interval (-2, 2) and then exponentiated to obtain a random starting value.  

To evaluate convergence, we examined trace plots and calculated the effective sample 
size and the Gelman Rubin potential scale reduction statistic for each posterior distribution in 
our model (Gelman & Rubin, 1992). The minimum effective sample size was 23,754 (less than 
our 30,000 total posterior samples), and the maximum potential scale reduction statistic was 
1.015 (close to 1.0). All three metrics indicated that all parameters converged to the posterior 
distribution. We then used these samples to visualize and summarize the distribution of the 
parameters using R statistical software (R Core Team, 2019). In the main body of the paper we 
report all results as additive effects, as opposed to the multiplicative effects that are more 
natural in Poisson and logistic regression. We do this to ease the transition from the traditional 
approaches typically used in LSA to more advanced model-based approaches by keeping the 
interpretation on the same scale as the response variables of interest (as in ANOVA or SLR). In 
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Table 5 we report the prior distributions and posterior mean/standard deviation of each raw 
parameter from equations (1)-(4), for completeness. Because we utilize Bayesian methods, we 
are able to seamlessly transform between additive and multiplicative effects. We now briefly 
illustrate two examples of how this transformation is done: 

 Suppose that we have obtained an MCMC draw from the joint distribution of 𝛽 , 𝛽  

from the RUD model given in Equation (1). The multiplicative effect on RUD for individuals of 
the highest SES (e.g. 𝑆𝐸𝑆 2.5), compared to individuals of the lowest SES (e.g. 𝑆𝐸𝑆

2.5), giving a discourse on any of the lectures is simply exp 5𝛽 , where 5 is the difference 
between the SES score of the two groups. In other words, we would expect individuals of the 

high-SES group to exhibit an average RUD that is exp 5𝛽  times that of the low-SES group, 
no matter the nature of the lecture prompting the discourse. The corresponding additive effect, 

specifically for a discourse given on the CC lecture, is exp 𝛽 exp 2.5𝛽

 exp 2.5𝛽 ; and the overall additive effect is found by computing the arithmetic average 

of these effects across all three lecture types. The additive effect is obviously a bit more 
complicated to compute but is more easily interpretable for those who are more familiar with 
traditional approaches, as it directly describes changes on the original outcome variable scale. 

As another example, suppose we have a draw from the distribution of 𝛽 , 𝛽  from 

the PDW model given in Equation (4). The multiplicative effect of TBI on the odds of a distinct 

word is simply exp 𝛽 , while the additive effect on PDW for discourses given on the CC 

lecture is logit 𝛽   logit 𝛽 . Again, the overall additive effect is the 

average of the effects across the CC, CE, and N lectures. 
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Tables 

Table 5.  Prior distributions and posterior mean/standard deviation for all parameters of interest. 
𝛽 ∼ 𝑁 𝜇, σ  indicates that coefficient 𝛽 has a normal prior distribution with mean 𝜇 and standard 
deviation σ, while 𝜏 ∼ 𝐻𝐶 0, 𝜃  indicates that 𝜏 has a half-Cauchy prior distribution with location 
0 and scale 𝜃. For each parameter, the notation “→ 𝑚, 𝑠 ” indicates that the posterior mean is 
𝑚 and the posterior standard deviation 𝑠. 

Language construct 
Prior Distribution → Posterior (Mean, Standard Deviation)  

Productivity: RUD 

𝛽 ∼ 𝑁 0, 0.45 → 0.520, 0.196  

𝛽 ∼ 𝑁 0, 0.1 → 0.056, 0.052  
𝜏 ∼ 𝐻𝐶 0, 2.5 → (0.388, 0.055)  

 

    𝛽 ∼ 𝑁 0, 0.45 → 0.182, 0.115  

𝛽 ∼ 𝑁 0, 0.1 → 0.051, 0.033  
 

𝛽 ∼ 𝑁 1.5, 1.2 → 𝐶𝐶: 2.060, 0.107 , 𝐶𝐸: 1.786, 0.109 , 𝑁: 1.881, 0.108  

Syntactic Complexity: RS 

𝛽 ∼ 𝑁 0, 1.5 → 0.081, 0.212  

𝛽 ∼ 𝑁 0, 0.3 → 0.166, 0.061  
𝜏 ∼ 𝐻𝐶 0, 2.5 → 0.313, 0.053  

 

𝛽 ∼ 𝑁 0, 1.5 → 0.179, 0.113  

    𝛽 ∼ 𝑁 0, 0.3 → 0.017, 0.032  
 

𝛽 ∼ 𝑁 1.5, 1.2 → 𝐶𝐶: 0.907, 0.119 , 𝐶𝐸: 0.751, 0.121 , 𝑁: 0.479, 0.113  

Syntactic Complexity: RWU 

𝛽 ∼ 𝑁 0, 0.65 → 0.152, 0.108  

𝛽 ∼ 𝑁 0, 0.135 → 0.078, 0.031  
𝜏 ∼ 𝐻𝐶 0, 2.5 → 0.179, 0.030       

 

𝛽 ∼ 𝑁 0, 0.725 → 0.079, 0.061  

𝛽 ∼ 𝑁 0, 0.135 → 0.015, 0.018  

𝜎 ∼ 𝐻𝐶 0, 2.5 → 0.201, 0.018  

𝛽 ∼ 𝑁 1.5, 1.2 → 𝐶𝐶: 2.298, 0.059 , 𝐶𝐸: 2.475, 0.060 , 𝑁: 2.352, 0.060  

Lexical Diversity: PDW 

𝛽 ∼ 𝑁 0, 2 → 0.180, 0.074      

𝛽 ∼ 𝑁 0, 0.4 → 0.056, 0.020  
𝜏 ∼ 𝐻𝐶 0, 2.5 → 0.060, 0.027  

 

   𝛽 ∼ 𝑁 0, 2.5 → 0.126, 0.035  

𝛽 ∼ 𝑁 0, 0.5 → 0.006, 0.010  

𝛽 ∼ 𝑁 2, 1.3 → 0.689, 0.042  

𝛽 ∼ 𝑁 1.5, 1.2 → 𝐶𝐶: 0.388, 0.042 , 𝐶𝐸: 0.289, 0.042 , 𝑁: 0.318, 0.041  
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Table 6. Posterior credible intervals for all parameters of interest. 

Language construct 
Posterior 95% Credible Interval  

Productivity: RUD 

𝛽 : 1.85, 2.27  

𝛽 : 1.57, 2.00  

𝛽 : 1.67, 2.09  

 

𝛽 : 0.91, 0.14  

𝛽 : 0.04, 0.41  
𝜏 : 0.29, 0.51  

 

𝛽 : 0.05, 0.16  

𝛽 : 0.01, 0.11  

Syntactic Complexity: RS 

𝛽 : 1.14, 0.68  

𝛽 : 0.99, 0.52  

𝛽 : 0.71, 0.26  

 

𝛽 : 0.50, 0.33  

𝛽 : 0.40, 0.04  
𝜏 : 0.22, 0.43  

 

𝛽 : 0.05, 0.29  

𝛽 : 0.05, 0.08  

Syntactic Complexity: RWU 

𝛽 : 2.18, 2.41  

𝛽 : 2.35, 2.59  

𝛽 : 2.23, 2.47  

 

𝛽 : 0.37, 0.06  

𝛽 : 0.20, 0.04  
𝜏 : 0.12, 0.24  

 

𝛽 : 0.02, 0.14  

𝛽 : 0.02, 0.05  

𝜎 : 0.17, 0.24  

Lexical Diversity: PDW 

𝛽 : 0.31, 0.47  

𝛽 : 0.21, 0.37  

𝛽 : 0.24, 0.40  

 

𝛽 : 0.32, 0.03  

𝛽 : 0.06, 0.20  
𝜏 : 0.01, 0.11  

 

𝛽 : 0.02, 0.09  

𝛽 : 0.01, 0.03  

𝛽 : 0.77, 0.61  

   

 


