
Supplemental material, Bramhall et al., “Subclinical Auditory Dysfunction: Relationship Between Distortion Product Otoacoustic Emissions and 
the Audiogram,” AJA, https://doi.org/10.1044/2020_AJA-20-00056  

Supplemental Material S1. Detailed description of the statistical models. 
 

The pure tone threshold measured on the 𝑖  ear at audiometric frequency 𝑓  is denoted 
by 𝑦 , where 𝑓  = {0.25, 0.5, 1, 2, 3, 4, 6, 8, 9, 10, 11.2, 12.5, 14, 16 kHz}. These pure tone 
thresholds at individual frequencies can be combined to make up an audiogram, defined as 𝒚𝒊, 
which is a vector with 14 elements corresponding to the pure tone thresholds at each frequency. 
Bold-faced symbols indicate vectors or matrices. The audiograms are assumed to be multivariate 
normal random variables such that  

 
𝒚𝒊~𝑁 𝝁𝒊, ∑     (1) 
 

where ∑ is a first-order auto-regressive covariance matrix with heterogeneous diagonal elements. 
Defining ∑ in this manner allows the residual variability to differ according to audiometric 
frequency. The parameter 𝝁𝒊 represents the predicted audiogram for the 𝑖  ear. 
 The effects of the DP-gram on 𝝁𝒊 are modeled as a functional predictor. The 𝑖  ear’s 
DP-gram, denoted by 𝒙𝒊, is a vector of 11 elements composed of DPOAE levels measured at 11 
f2 primary frequencies 𝑓 , where 𝑓 ={1, 1.2, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10 kHz}. 
Conceptually, the goal is to predict the 𝑖  ear’s audiogram 𝒚𝒊 with the same ear’s DP-gram 𝒙𝒊. 
This is accomplished by identifying frequency-specific weight functions that transform the DP-
gram into a predicted pure tone threshold for each audiometric frequency (see Figure 1). The 
statistical problem is that of estimating the weight functions given the available data. 
 The simplest way to predict the audiogram is to use a model where 𝝁𝒊 is equal to the 
mean pure tone threshold at each audiometric frequency, or rather, more precisely, a vector of 
independent model intercepts at each frequency. Because the predicted audiogram is simply the 
sample mean audiogram, the weight function for this model is equal to zero across all 𝑓  
and 𝑓  and the predicted audiogram will be identical for all ears regardless of their DPOAE 
levels. This simple model was fit to the data to serve as a baseline for comparison with a more 
elaborate model that includes DPOAEs and is referred to as the “mean audio model.”  
 Another, intuitively appealing model to consider has independent regression coefficients 
for each DPOAE level on each 𝑓 . This results in a model with 154 independent regression 
coefficients (11 𝑓  effects x 14 𝑓  = 154). Although this model should predict the sample 
data quite well, it will generalize poorly to other samples because it will tend to overfit the data 
due to high correlations between DPOAE levels across 𝑓 . The result of this type of model 
is a set of weight functions, one per audiometric frequency, that appears jagged across 𝑓  
with a high degree of uncertainty.  
 An alternative approach is to treat both the audiogram and the DP-gram as continuous 
functions sampled at discrete frequencies. This is sensible because the audiometric test 
frequencies and the DPOAE f2 primaries were chosen by convention. It is possible to obtain data 
from additional test frequencies if time and equipment allows. With the 𝑖  ear’s DP-gram now 
written as a function of 𝑓 , i.e. 𝑥 𝑓 , the predicted pure tone threshold 𝜇  at 
audiometric frequency 𝑓  can be represented as 
 

𝜇 𝑥 𝑓 ∙ 𝛽 𝑓 , 𝑓  𝑑𝑓   (2) 
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This equation indicates that integration occurs over the f2 frequencies of the DP-gram, weighted 
according to the regression coefficient function 𝛽. These integrals comprise the mean vector 𝝁𝒊 
in equation (1). Low-rank smoothing begins by representing each frequency in the audiogram or 
DP-gram as a collection of nine basis functions, rather than as 14 or 11 discrete frequencies, 
respectively. This approach reduces the number of unknown coefficients to 81 compared to the 
154 for the independent coefficients model described in the previous paragraph and by imposing 
a “roughness” penalty on the coefficient surface, it induces smoothing across frequency for the 
regression coefficients. The notation for this model is quite complex, so please refer to Scheipl et 
al. (2015, section 1.1) and Wood et al. (2012) for more detail. This model is referred to as the 
“full model.” 


