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Supplemental Material S1. Methods. 
 
 
Modularity Analysis 
 Broadly speaking, a modular architecture refers to the presence of groups of traits 
(modules) which exhibit relatively strong inter-connections (internal integration) but weaker 
connections to traits in other modules. Modularity may reflect shared developmental origins or 
functional roles and can lead, via correlational selection, to genetic integration. Hypotheses of 
modularity can be tested against a null hypothesis of no modularity which occurs when traits 
within and between modules are of similar magnitude. If that magnitude is high, then the trait is 
highly integrated. If that magnitude is low, then there is very little integration among traits of that 
structure.  
 For the current study, we treat each laryngeal cartilage as an a priori module. Thus, the 
coordinates which define the semilandmarks and landmarks of that cartilage are the traits 
assigned to that module. The steps involved in acquiring landmark and semilandmark data from 
the surface renderings of each cartilage from the CT data were described in the main text, as was 
the process of superimposing all cartilages of the same type (e.g., cricoid) via generalized 
Procrustes analysis. We will now present the workflow for the analysis of modularity hypotheses 
for the laryngeal cartilages as these methods are new to the field of laryngeal morphometrics. 
The following draws heavily from the work of Adams (2016) and Adams and Collyer (2019) 
who developed these statistics and the appropriates tests of statistical significance (see also 
Collyer et al., 2015; Adams and Collyer, 2016). 

To test hypotheses of modularity, we must first operationalize our definition of 
modularity. The covariance ratio (CR) represents an appropriate statistic for this purpose. To 
calculate the CR, we first generate a single matrix, C, where rows contain all variables for a 
single observation and the columns contain all variables for a pair of cartilages – the cricoid and 
arytenoid in the following example. A partitioned covariance matrix, X, is generated from C as 
follows: 

 

X = 
𝐗𝐂𝐂 𝐗𝐂𝐀
𝐗𝐀𝐂 𝐗𝐀𝐀

 

 
XCC and XAA are covariance matrices within the cricoid and arytenoid modules, respectively. The 
XCA, and XAC modules are covariance matrices between the two modules (XAC = XCA

t). The CR 
statistic is calculated as follows: 
 

CR!" =  
𝑡𝑟(𝐗𝐂𝐀𝐗𝐀𝐂)

𝑡𝑟(𝐗𝐂𝐂∗ 𝐗𝐂𝐂∗ )𝑡𝑟(𝐗𝐀𝐀∗ 𝐗𝐀𝐀∗ )
 

 
Where tr indicates the trace of a matrix (sum of the diagonal elements) and 𝐗𝐂𝐂∗  and 𝐗𝐀𝐀∗  are the 
within-module covariance matrices with zeros on the diagonal. The ratio represents the total 
between module covariance scaled by the within module covariance (excluding individual trait 
variance). The value of CR is between 0 and positive values. When modules have low between- 
and high within- module covariance (a modular organization), this value approaches zero. When 
within- and between-module covariance is nearly equal (no modular signal), the value 
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approaches 1. The CR statistic cannot discern between high or low overall integration when 
values are near 1. Statistical significance of the CR statistic is assessed via a permutation 
procedure where the landmarks are randomly assigned to the two modules and the CR value is 
recalculated. This procedure produces an empirical distribution of CR values representing the 
null hypothesis of no modularity. The expected value of this distribution is 1. The percent of 
these resampled values which are less than the observed CR (CRCA) is an estimate of statistical 
significance (p). In our example, CRCA = 0.65 (p = 0.001). This implies that the cricoid and 
arytenoid cartilage shapes are more modular than by chance. 

To produce a measure which is more broadly comparable across studies, we next 
calculate a z-score (a standardized effect size) which assess the magnitude of the effect. The z-
score for CR is:  

 

Z!"!" =  
CR!" − µ!

σ!
 

 
Where µ! is the average CR value calculated from the resampled distribution and 𝜎!is the 
standard deviation of that distribution. By standardizing the difference between CRCA and µ! by 
variation around µ!, it is possible to assess the magnitude of the modularity signal measured 
between the cricoid and arytenoid cartilages. As CR values less than 1 indicate modularity, and 
the expectation for µ! is 1, more negative values indicate a larger effect size. As reported in 
Table 3 of the main text, Z!"!"= -20.9. 
 Finally, we can compare the effect sizes (ZCR) for each pair of modules to ascertain 
whether a pair of modules (cartilages) exhibit a stronger signal of modularity than other pairs 
using the pairwise Z statistics. For example, we can compare the Z!"!"value of -20.9 to the 
Z!"!"value of -24.2 calculated for the thyroid and arytenoid cartilages. Pairwise Z is calculated 
as follows: 
 

Z!"!!" =
CR!" − µ!!" − (CR!" − µ!!")

σ!!"
! +  σ!!"

!
 

 
The values in the above equation are the same quantities used in the calculation of Z!" above. 
The numerator is the absolute value of the difference in effect sizes for each pair of cartilages, 
and the denominator is the pooled within-sample standard deviation. Statistical significance of 
pairwise Z is assessed by reference to a standard normal distribution. To complete our example, 
the effect size of the thyroid-arytenoid pair is significantly larger than that of the cricoid-
arytenoid pair. Thus, the thyroid and arytenoid cartilages have a stronger signal of modularity 
than the cricoid and arytenoid cartilages. 
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