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Supplemental Material S1.  

 

Data Handling Procedures 

Univariate normality for all items was assessed through inspection of skewness and kurtosis criteria (Table S1), histograms and boxplots 
of the data (not shown). Study variables did not exceed the recommended thresholds (Kline, 2011) for problematic skew (> 3) or kurtosis (> 10) 
indicating acceptable univariate normal distribution. Multivariate normality was tested across grades in AMOS 23 using Mardia’s normalized 
estimate of multivariate kurtosis (1970). In the present study critical ratio of Mardia’s kurtosis exceeded the recommended cut-off value of ǀ5ǀ 
(Bentler, 2006; Park & Schutz, 2005) for G1 (c.r = 14.087) suggesting violation of multivariate normality (Table S1). Robust techniques were 
used for handling legitimate outliers and dealing with multivariate non-normality (Kwak & Kim, 2017). Although there are different testing 
procedures proposed in the literature to assess multinormality (see Kim, 2015), Mardia’s test is commonly used because it is simple and 
informative regarding non-normality of the data (Zhou & Shao, 2014). Multivariate outliers as indicated by the Mahalanobis distance criterion 
and its respective p1 and p2 values were not deleted to improve departure from multinormality as this could entail the risk of mistakenly 
eliminating valid information (Sheskin, 2004, p. 403). 

Multivariate collinearity was also examined through the correlation matrix for independent variables (not shown) and the variance 
inflation factor (VIF). Examination of VIF generated from multiple regression analysis in SPSS 25 by assigning a dummy variable (gender was 
used) as the dependent variable and task as the independent variable. Given that all correlation coefficients were below < .90 (Hair et al., 2010) 
and VIF < 10 (Kline, 2011) multicollinearity problems were not addressed further (see Table S2). 

 

Model Testing Procedures and Criteria 

The Satorra-Bentler scaled chi-square fit index (also known as the Yuan–Bentler T2 statistic; Yuan & Bentler, 2000) was used to assess 
overall model fit with a nonsignificant χ2 value indicating a small discrepancy between expected and observed covariance matrices and thus an 
acceptable measurement model (Barrett, 2007). Given the sensitivity of χ2 to sample size (Kline, 1998; Schumacker & Lomax, 2004) we also 
examined a combination of other fit indices including the comparative fit index (CFI), the non-normed fit index (NNFI, also known as the 
Tucker-Lewis index or TLI), the root-mean-square error of approximation (RMSEA), the standardized root-mean-square residual (SRMR) and 
the Akaike information criterion (AIC). CFI analyzes the extent to which the tested model is superior to an alternative model in reproducing the 
observed covariance matrix (Bentler, 1990). A cut-off value of CFI ≥ .95 is presently recognized as indicative of good fit (Brown, 2006; Hu & 
Bentler, 1999). TLI evaluates the discrepancy between the chi-square value of the hypothesized model and the chi-square of the null model 
(Bentler & Bonett, 1980) with values ≥ .95 indicating acceptable fit (Hu & Bentler, 1999). RMSEA assesses how well optimally chosen 
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parameter estimates fit the population covariance matrix (Hooper et al., 2008). RMSEA values ≤ .08 or, more conservatively ≤ .05, suggest 
acceptable model fit (Brown, 2006). 90% confidence intervals for the RMSEA and results of the closeness of fit test which examines the null 
hypothesis that RMSEA equals .05 (Browne & Cudeck, 1992) were also reported. SRMR is an index of the average of standardized residuals 
between the observed and the hypothesized covariance matrices (Bentler, 1995, cited in Chen, 2007). SRMR values as high as .08 are deemed 
acceptable (Hu & Bentler, 1999) and less than ≤ .05 indicate a well-fitting model (Byrne, 2012; Diamantopoulos & Siguaw, 2000). AIC, a log 
likelihood measure of fit useful for comparing typically non-nested models, adjusts the chi-square value for the number of estimated parameters 
(Burnham & Anderson, 2004). AIC’s smaller value indicates better fit (Kline, 2013). CFI incremental change was also used in comparison of 
nested models, with a value < .01 favoring the more parsimonious one (Moran et al., 2013).  

In addition to the above model fit indices, the scaled χ2 difference test (Δχ2) was estimated based on the procedure described by Satorra 
and Bentler (2001) to compare pairs of nested models. If the Δχ2 test is not statistically significant, the more restricted model is retained as 
having model fit no worse than the more complex model. If the difference was statistically significant we accepted the more complex model as 
more adequate. Descriptive fit indices and results of statistical comparisons were not the only criteria we took into account in order to decide the 
measurement model with the best fit.  
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Table S1 
Variance invariance flator (VIF) across grades 
 Prekindergarten  Kindergarten  First grade  
VARIABLE                                                               VIF 
NAR 1.59 1.28 1.21 
RETEL 1.48 1.44 1.32 
ST_COMP 2.04 1.61 1.27 
VOC_DEF 2.68 2.08 1.75 
CONT_INTER 1.84 1.62 1.83 
CONT_RESP 2.85 2.58 1.75 
COM_INT 3.16 2.49 1.94 
MORPH_DER 1.43 1.37 1.36 
MORPH_INFLV 3.61 2.82 2.61 
MORPH_INFLN 3.74 2.76 2.18 
LIST_COMP 2.20 1.82 1.52 
REC_VOC 2.80 1.95 1.64 
NAM 2.44 1.82 1.34 
INIT_PHON 1.95 1.69 1.51 
BL_PHON 2.05 1.83 1.72 
PHON_EL 2.39 1.84 1.80 
Note. NAR = narrative; RETEL= retelling; ST_COMP = story comprehension; VOC_DEF = vocabulary 
definition; CONT_INTER = context interpretation; CONT_RESP = context proper response; COM_INT = 
communicative intent; MORPH_DER = implicit understanding; MORPH_INFLV = implicit understanding of 
verb inflections; MORPH_INFLN = implicit understanding of noun inflections; LIST_COMP = listening 
comprehension (sentences); REC_VOC = receptive vocabulary; NAM = naming; INIT_PHON = initial 
phonemes; BL_PHON = blending phonemes; PHON_EL= phoneme elision. 
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Table S2. 
CFA results of the one-, two- and three-dimensional models by grade 
Model Y-B χ2 df MLR 

scaling 
factor 

RMSEA, p close 
(90% CI) 

CFI TLI SRMR AIC 

Prekindergarten  
(n = 180) 

        

Model (A) 438.963* 104 1.00 .134, p <.001 [.121, .147] .772 .737 .080 1,3014.55 
Model (B) 337.622* 103  .99 .112, p <.001 [.099, .126] .841 .814 .072 1,2910.59 
Model (C) 333.299* 101  .99 .113, p <.001 [.100, .127] .842 .812 .066 1,2909.43 
Kindergarten 
(n = 269) 

        

Model (A) 691.196* 104 1.00  .145, p <.001 [.135, .155] .635 .579 .098 1,9799.11 
Model (B) 640.734* 103  .99 .139, p <.001 [.129, .150] .666 .610 .102 1,9740.50 
Model (C) 648.012* 101  .98 .142, p <.001 [.132, .152] .660 .596 .097 1,9745.28 
First-grade  
(n = 351) 

        

Model (A) 735.327* 104 1.03 .132, p <.001 [.123, .141] .572 .506 .095 2,3930.73 
Model (B) 651.283* 103 1.03 .123, p <.001 [.114, .132] .629 .567 .096 2,3842.41 
Model (C) 692.753* 100 1.01 .129, p <.001 [.120, .138] .599 .524 .091 2,3869.67 
Note. Model (A) = one-dimensional; Model (B) = two-dimensional; Model (C) = three-dimensional; MLR = 
robust maximum likelihood; RMSEA = root mean square error of approximation; CFI = comparative fit index; 
TLI = Tucker Lewis index; SRMR = standardized root mean square residual; AIC = Akaike’s information 
criteria.  
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Figure S1. One, two- and three- dimensional models for PK children (standardized factor loadings and factor correlations); LANG = language; SEM_DISCR = 
semantic_discourse; MORPH_PHON = morphological-phonological; DISCR = discourse; PHON = phonological; SEMANT = semantic; NAR = narrative; RETEL= retelling; 
ST_COMP = story comprehension; VOC_DEF = vocabulary definition; LIST_COMP = listening comprehension (sentences); REC_VOC = receptive vocabulary; NAM = 
naming; CONT_INTER = context interpretation; CONT_RESP = context proper response; COM_INT = communicative intent; MORPH_DER = implicit understanding; 
MORPH_INFLV = implicit understanding of verb inflections; MORPH_INFLN = implicit understanding of noun inflections; INIT_PHON = initial phonemes; BL_PHON = 
blending phonemes; PHON_EL= phoneme elision. 
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Figure S2. One, two- and three- dimensional models for K children (standardized factor loadings and factor correlations); LANG = language; SEM_DISCR = 
semantic_discourse; MORPH_PHON = morphological-phonological; DISCR = discourse; PHON = phonological; SEMANT = semantic; NAR = narrative; RETEL= retelling; 
ST_COMP = story comprehension; VOC_DEF = vocabulary definition; LIST_COMP = listening comprehension (sentences); REC_VOC = receptive vocabulary; NAM = 
naming; CONT_INTER = context interpretation; CONT_RESP = context proper response; COM_INT = communicative intent; MORPH_DER = implicit understanding; 
MORPH_INFLV = implicit understanding of verb inflections; MORPH_INFLN = implicit understanding of noun inflections; INIT_PHON = initial phonemes; BL_PHON = 
blending phonemes; PHON_EL= phoneme elision. 
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Figure S3. One, two- and three- dimensional models for G1 children (standardized factor loadings and factor correlations); LANG = language; SEM_DISCR = 
semantic_discourse; MORPH_PHON = morphological-phonological; DISCR = discourse; PHON = phonological; SEMANT = semantic; NAR = narrative; RETEL= retelling; 
ST_COMP = story comprehension; VOC_DEF = vocabulary definition; LIST_COMP = listening comprehension (sentences); REC_VOC = receptive vocabulary; NAM = 
naming; CONT_INTER = context interpretation; CONT_RESP = context proper response; COM_INT = communicative intent; MORPH_DER = implicit understanding; 
MORPH_INFLV = implicit understanding of verb inflections; MORPH_INFLN = implicit understanding of noun inflections; INIT_PHON = initial phonemes; BL_PHON = 
blending phonemes; PHON_EL= phoneme elision. 
 


