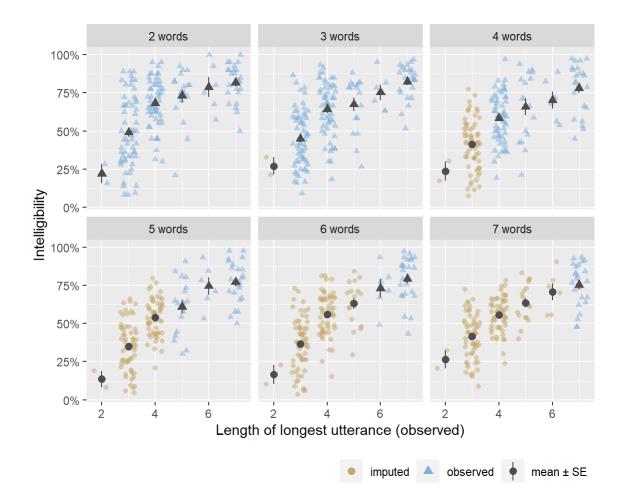
Supplemental Material S1. Technical details on integrated weighted intelligibility response for multiword utterances.

Let L_i be the length of the longest utterance(s) achieved by child *i*, so that $2 \le L_i \le 7$ for each child. Let R_{ik} be the intelligibility score (i.e., the average across the two final listeners) for utterances of length *k* for child *i*, where R_{ik} is missing for $k > L_i$. Finally, let X_i be the child's age.

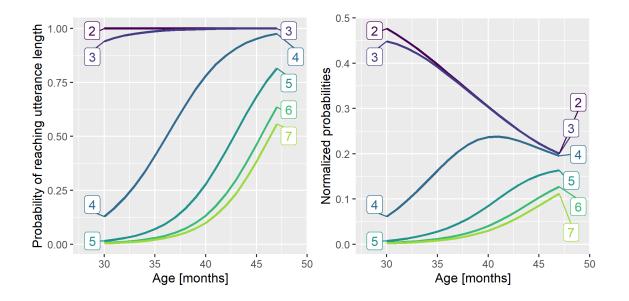
Problem. The challenge is that we do not want to analyze and report separately the intelligibility values R_{ik} for each utterance length k because (a) it would result in too many results, each with relatively weak information, getting weaker for larger k, and (b) the non-missing intelligibility values for larger k are only available for the children with higher levels of development.

Imputation and averaging. Here we generate a weighted average of utterance length-specific intelligibility values after imputing the missing values.

- 1. Using only the data for which $L_i = 7$, fit a regression model for score R_{i7} as a linear function of $R_{i2}, ..., R_{i6}$. Save the regression coefficients.
- 2. Sequentially fit 4 more regression models (for k = 3, 4, 5, 6) for R_{ik} as functions of $R_{i2}, ..., R_{i,k-1}, L_i$, noting the inclusion of L_i in this model). For each model fit, only use the data for which for $L_i \ge k$. Save the regression coefficients for each model.
- 3. Using the models, for <u>all missing values</u> of R_{ik} (i.e., when $L_i > k$), predict (impute) R_{ik} with the regression models. Call the new values \tilde{R}_{ik} . (These are the true R_{ik} 's when available or the imputed ones when not). Start from k = 3 and work the way up so in each case k, either true or imputed values \tilde{R}_{ik} are used to predict the next level up.
- 4. Now, using a 2 df natural spline in age (X_i), fit an ordinal logistic regression model for L_i . From this model, obtain, for k = 3, 4, 5, 6, 7, probability $\tilde{\pi}_{ik}$ as a function of X_i that $L_i \ge k$. These probabilities will be decreasing in k. Note that $\tilde{\pi}_{i2} = 1$. Now normalize these values by computing $\pi_{ik} = \frac{\tilde{\pi}_{ik}}{\sum_{k'=2}^{T} \tilde{\pi}_{ik'}}$ so that they sum to 1.
- 5. Finally compute a weighted average Y_i of $R_{i2}, ..., R_{i7}$ using weights $\pi_{i2}, ..., \pi_{i7}$. Call this weighted average \tilde{R}_i . These values serve as our *integrated weighted intelligibility response* for multiword utterances.

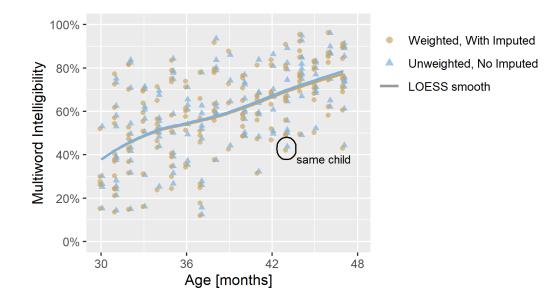

Discussion. Our approach is very algorithmic; further methodological investigation would fully specify a statistical model for latent intelligibility which would (a) give rise to the observed (manifest) L_i values as well as to the values of the observed instances of R_{ik} .

Supplemental material, Hustad et al., "Development of Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-Sectional Study of Growth," *JSLHR*, <u>https://doi.org/10.1044/2020_JSLHR-20-00008</u>


Outcome	Predictor	Estimate	SE	t	р	N	Adj. R^2
3-wd	(Intercept)	07	.04	-1.70	.091	162	.70
	1-wd	.42	.10	4.27	<.001		
	2-wd	.45	.07	6.69	<.001		
	Length of longest utt.	.03	.01	4.04	<.001		
4-wd	(Intercept)	13	.07	-1.79	.077	102	.58
	1-wd	.45	.14	3.28	.001		
	2-wd	.21	.11	1.88	.063		
	3-wd	.36	.10	3.46	< .001		
	Length of longest utt.	.02	.01	1.59	.115		
5-wd	(Intercept)	15	.14	-1.04	.304	47	.61
	1-wd	.06	.21	0.27	.786		
	2-wd	.33	.15	2.25	.030		
	3-wd	.20	.16	1.25	.219		
	4-wd	.29	.13	2.26	.029		
	Length of longest utt.	.03	.02	1.64	.108		
6-wd	(Intercept)	13	.35	-0.37	.716	30	.49
	1-wd	.24	.24	1.01	.322		
	2-wd	.04	.23	0.17	.870		
	3-wd	.33	.27	1.23	.232		
	4-wd	.07	.18	0.41	.687		
	5-wd	.39	.22	1.79	.086		
	Length of longest utt.	.01	.05	0.24	.810		
7-wd	(Intercept)	.09	.14	0.60	.555	24	.70
	1-wd	.24	.20	1.18	.253		
	2-wd	06	.19	-0.34	.741		
	3-wd	35	.25	-1.40	.180		
	4-wd	.19	.14	1.30	.210		
	5-wd	.15	.19	0.78	.445		
	6-wd	.71	.17	4.10	<.001		

Coefficients used for imputation (1, 2).

Imputation results (3). The following figure shows the intelligibility scores for each utterance length (panels) by length of lonest utterance (*x* axis). The blue triangles are observed and gold circles are imputed.



Weighting of utterance lengths by age (4). The following figure shows the probability of reaching each utterance length as a function of age (left). These probabilities were normalized and used as weights for computing the overall multiword intelligibility average (right). Thus, at 30 months, over 90% of the weighting comes from the 2- and 3-word utterances but by 47 months, 40% of the weighting comes from 2- and 3-word utterances.

Supplemental material, Hustad et al., "Development of Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-Sectional Study of Growth," *JSLHR*, <u>https://doi.org/10.1044/2020_JSLHR-20-00008</u>

Computing the final weighted average (5). The following figure compares multiword intelligibility scores from observed scores versus scores with imputation and weighting. The average intelligibility as a function of age was unchanged by the procedure and differences at the child-level were small. We interpret the similarity here as encouraging: The goal of this procedure was provide a coherent way to handle missing data, not dramatically change the results.

