Supplemental Material S1. Description of priors for Bayesian regression model.

The α , ξ , and ω parameters were given $N_2(\mathbf{0},I_2)$ priors, representing bivariate normal densities with mean vector $\mathbf{0}$ and an identity matrix covariance. The $\boldsymbol{\beta}$ parameter was also given a bivariate normal prior centered at positive growth so that $\boldsymbol{\beta} \sim N_2\left(\mathbf{0}.\mathbf{25},\begin{bmatrix}0.5 & 0\\ 0 & 0.5\end{bmatrix}\right)$. The subject-specific intercepts $\boldsymbol{\delta}_S$ were given $N_2(\mathbf{0},\boldsymbol{\tau}_\delta)$ priors, with a 3 degree of freedom inverse Wishart prior on $\boldsymbol{\tau}_\delta$. The group effects $\boldsymbol{\gamma}_G$, the level effects $\boldsymbol{\theta}_L$, and the group by level interaction effects $\boldsymbol{\nu}_{G,L}$ were given hierarchical Half-t priors (Alvarez et al., 2014; Huang & Wand, 2013) to induce shrinkage towards constant effects unless the data dictate otherwise.

References

Alvarez, I., Niemi, J., & Simpson, M. (2014). Bayesian inference for a covariance matrix. *Annual Conference on Applied Statistics in Agriculture*, *26*, 71–82.

Huang, A., & Wand, M. P. (2013). Simple marginally noninformative prior distributions for covariance matrices. *Bayesian Analysis*, 8(2), 439–452.