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Posterior Computation 

The likelihood for the logistic regression model is analytically inconvenient and not amenable to easy 

posterior inference. A naive MCMC strategy to fit logistic models is via the use of Metropolis-

Hastings algorithm. Such methods, however, suffer from slow mixing unless efficient problem-

specific proposal distributions are used. Efficient auxiliary variable augmentation strategies have 

been proposed to address these issues (Holmes & Held, 2006; Polson, Scott, & Windle, 2013). In this 

work we employed scheme proposed in (Polson et al., 2013), introducing Pòlya-Gamma auxiliary 

variables 𝜔𝑖𝑡 ~ 𝑃𝐺{𝑛𝑖(𝑡), 𝜇(𝑡) + 𝜉(𝑡) 𝜂𝑖}. Conditionally on these variables, the likelihood is 

normal, the likelihood contribution of the 𝑖𝑡ℎ individual being  

 

𝐿𝑖(𝜷, 𝜂𝑖 , 𝜸, 𝝎) ∝ ∏ {𝑒𝜅𝑖𝑡(𝒙𝑖𝑡𝜷+𝒙𝑖𝑡𝜸𝜂𝑖) 𝑒−
𝜔𝑖𝑡

2
(𝒙𝑖𝑡𝜷+𝒙𝑖𝑡𝜸𝜂𝑖)2

}

𝑇

𝑡=1

, 

 

where 𝜅𝑖𝑡 = 𝑦𝑖(𝑡) −  
1

2
𝑛𝑖(𝑡). We denote with 𝒙𝑖𝑡 the 𝐽 B-spline functions evaluated at the 𝑡𝑡ℎ point 

for individual 𝑖. Given this likelihood, all full conditional distributions can be obtained in closed form. 

It is thus straightforward to perform posterior inference using a Gibbs sampling algorithm (Gelfand 

& Smith, 1990; Geman & Geman, 1984) comprising the following steps.  

 

1. For the spline coefficients 𝜷 of the latent mean function 𝜇(𝑡),  

 

𝜷 | 𝒚, 𝜸, 𝝎, 𝜎𝛽
2, 𝜂1, … , 𝜂𝑛 ~ 𝑀𝑉𝑁𝐽 {(

𝑃

𝜎𝛽
2 + 𝑿𝑇𝛀𝑿)

−1

𝑿𝑇𝛀𝒓, (
𝑃

𝜎𝛽
2 + 𝑿𝑇𝛀𝑿)

−1

 }, 

 

where 𝛀 =  𝑑𝑖𝑎𝑔{𝜔𝑖𝑡} and the vector 𝒓 = {𝑟𝑖𝑡}𝑖=1,𝑡=1
𝑛,𝑇

, 𝑟𝑖𝑡 =
𝜅𝑖𝑡

𝜔𝑖𝑡
− 𝒙𝑖𝑡

𝑇  𝜸 𝜂𝑖 and 𝜅𝑖𝑡 = 𝑦𝑖(𝑡) −  
1

2
𝑛𝑖(𝑡). 

 

 

2. For the smoothness inducing penalty parameter 𝜎𝛽
2,  

 

𝜎𝛽
2 | 𝜷 ~ 𝐼𝑛𝑣 − 𝐺𝑎 (𝑎𝛽 +

𝐽

2
, 𝑏𝛽 +

1

2
𝜷𝑇𝑷𝜷). 

 

3. For the spline coefficients 𝜸 of the latent mean function 𝜉(𝑡),  

 

𝜸 | 𝒚, 𝜷, 𝝎, 𝜎𝛾
2, 𝜂1, … , 𝜂𝑛 ~ 𝑀𝑉𝑁𝐽 {(

𝑃

𝜎𝛾
2

+ 𝑿𝑇𝛀𝑿)

−1

𝑿𝑇𝛀𝒓′, (
𝑃

𝜎𝛾
2

+ 𝑿𝑇𝛀𝑿)

−1

 }, 

 

where 𝛀 =  𝑑𝑖𝑎𝑔{𝜔𝑖𝑡} and the vector 𝒓′ = {𝑟𝑖𝑡
′ }𝑖=1,𝑡=1

𝑛,𝑇
, 𝑟𝑖𝑡

′ =
𝜅𝑖𝑡

𝜂𝑖 𝜔𝑖𝑡
−

𝒙𝑖𝑡
𝑇  𝜷

𝜂𝑖
 and 𝜅𝑖𝑡 = 𝑦𝑖(𝑡) − 

1

2
𝑛𝑖(𝑡). 

 

 

4. For the smoothness inducing penalty parameter 𝜎𝛾
2,  

 

𝜎𝛾
2 | 𝜸 ~ 𝐼𝑛𝑣 − 𝐺𝑎 (𝑎𝛾 +

𝐽

2
, 𝑏𝛾 +

1

2
𝜸𝑇𝑷𝜸). 

 

 

 

 

https://doi.org/10.1044/2018_JSLHR-S-ASTM-18-0283


Online supplemental material, Paulon et al., “Functional Logistic Mixed-Effects Models for Learning Curves From Longitudinal Binary Data,” 
JSLHR, https://doi.org/10.1044/2018_JSLHR-S-ASTM-18-0283  

5. For the random effects distributions 𝜂𝑖, 

 

𝜂𝑖  | 𝒚, 𝝎, 𝜷, 𝜸, 𝜎𝜂
2 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 [
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𝑇  𝜸𝑇
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𝑇  𝜸 𝒙𝑖𝑡

𝑇  𝜷 

1
𝜎𝜂

2 + ∑ 𝜔𝑖𝑡 (𝒙𝑖𝑡
𝑇  𝜸)2𝑇

𝑖=1

, {
1

𝜎𝜂
2

+ ∑ 𝜔𝑖𝑡 (𝒙𝑖𝑡
𝑇  𝜸)2

𝑇

𝑖=1

}

−1

]. 

 

 

6. For the random variance term 𝜎𝜂
2,  

 

𝜎𝜂
2 | 𝜂1, … 𝜂𝑛 ~ 𝐼𝑛𝑣 − 𝐺𝑎 (

𝑎𝜂 + 𝑛

2
,
𝑎𝜂 + ∑ 𝜂𝑖

2𝑛
𝑖=1

2
). 

 

Convergence Diagnostics 

This section presents some MCMC convergence diagnostics for the Gibbs sampler 

described in the main manuscript. The results presented here are for the speech learning data set. 

Diagnostics for the simulation experiments were similar and hence omitted. Figure S.1 shows the 

trace plots of the sampled values of three individual level curves at the same time point 𝑡0 = 1. The 

Geweke test (Geweke, 1992) for stationarity of the chains, which formally compares the means of 

the first and last part of a Markov chain (by default the first 10% and the last 50%), is also 

performed. If the samples are drawn from the stationary distribution of the chain, the two means are 

equal and Geweke's statistic has an asymptotically standard normal distribution. The test indicated 

that convergence was satisfactory.  

 

Supplemental Material S1. Traceplots of the sampled values of three individual curves 𝜇𝑖(𝑡0), 
(denoted by the different colors) at the same time point 𝑡0 = 1.  
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Additional Comments on Implementation Issues 

It is possible to reformulate the proposed spline based as 

 

ln
𝜋𝑖(𝑡)

1 − 𝜋𝑖(𝑡)
= 𝑩𝑞,𝐽

𝑇 (𝑡) 𝜷 + 𝑩𝑞,𝐽
𝑇 (𝑡) 𝜸 𝜂𝑖 , 

 

which can be identified with a traditional logistic linear mixed model as  

ln
𝜋𝑖(𝑡)

1 − 𝜋𝑖(𝑡)
= 𝑿(𝑡)𝑇 𝜷 + 𝒁(𝑡)𝑇 𝒖𝑖, 

 

where 𝑿(𝑡)𝑇 = 𝑩𝑞,𝐽
𝑇 (𝑡) are covariates associated with fixed effects parameters 𝜷, and 𝒁(𝑡)𝑇 =

𝑩𝑞,𝐽
𝑇 (𝑡)  are covariates associated to the random effects 𝒖𝑖 =  𝜸 𝜂𝑖. The model could then be fitted 

using the glmer package in R. As also mentioned in the main paper, our attempts fit such complex 

models with glmer was fraught with serious convergence issues.  

 

 

Additional Figures 

 

Supplemental Material S2. Plot of 8 quadratic (𝑞 = 2) B-splines on [𝑎, 𝑏] defined using 11 knot 

points that divide [𝑎, 𝑏] into 𝐾 = 6 equal subintervals. 
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Supplemental Material S3. Flexibility of spline mixtures. The red curve is the function produced by 

the weighted sum of the spline bases of Supplemental Material S2, weighted by coefficients 𝜷. The 

weighted splines are shown in other varied colors. 

 

 

 

 

 

Supplemental Material S4. Distribution of the mean integrated squared errors (MISEs) between 

the true and the estimated population function 𝜋(𝑡) estimated by the three models under different 

simulation scenarios. 
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