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Supplemental Material S1.  

 

Individualized Amplification of Speech 

For the OHI listeners, source speech signals were amplified using an individualized gain 
profile such that third-octave speech levels would be at least 10 dB above the listener’s FRESH-
noise audiometric thresholds at frequencies up to 4 kHz (Humes & Coughlin, 2009). This was 
achieved by first measuring the third-octave frequency response of EARTONE 3A insert 
earphones (to be used for stimulus presentation) in a 2-cc coupler (Larson Davis model 
AEC203). A 30 s Gaussian noise calibration signal was filtered into third-octave bands using a 
sixth-order, class 1 digital filter bank with center frequencies from 125–8000 Hz and magnitude 
attenuation limits as specified in ANSI S1.11-2004 (Acoustical Society of America, 2004). Each 
time-domain, band-limited signal was then normalized to a common root-mean-square (RMS) 
level that would produce a 2-cc coupler level of ~75 dB SPL for the broadband signal. The actual 
2-cc coupler level (dB SPL) produced by each band-limited signal was recorded on a Larson 
Davis System 824 sound level meter. These values were converted to dB HL by subtracting the 
reference equivalent threshold SPLs of the EARTONE 3A headset (Acoustical Society of 
America, 2004).  

Speech signals were presented diotically to ONH listeners at an overall level of 75 dB 
SPL. For OHI listeners, speech signals were first set to an overall level of 75 dB SPL and then 
separated into third-octave bands using the same filter bank as used for the calibration noise. The 
third-octave speech levels were converted to dB HL based on the levels produced by the 
calibration noise in dB HL. The listener’s audiometric thresholds were interpolated over 
frequency (linear interpolation on the log scale) to match the center frequencies of the third-
octave filter bank, and the RMS level in any band for which the speech level did not exceed the 
listener’s audiometric threshold by at least 10 dB HL was scaled to produce a third-octave level 
exactly 10 dB above threshold. The individual bands were then summed to produce an amplified 
broadband signal. This process was performed separately for each stimulus presentation and 
individualized to the audiogram of each ear. 

Bubbles Filtering 

The bubbles filtering procedure using phase gradient heap integration (PGHI) was 
implemented in MATLAB R2015b (The MathWorks, Inc.) using the Phase Retrieval 
(“phaseret”) toolbox v0.2.1 and the Large Time/Frequency Analysis (“ltfat”) toolbox v2.2.1 
(Průša et al., 2014). For each two-talker mixture, a spectrogram was obtained via the discrete 
gabor transform using a Gaussian window with a frequency resolution of 16.3 Hz and a hop time 
of 1 ms. The log-magnitude spectrogram was transformed into the modulation power spectrum 
(MPS) domain via two-dimensional fast Fourier transform (2D-FFT) where the resulting 
representation had a pixel-by-pixel resolution of 0.5 Hz in the temporal modulation dimension 
and 0.1 cyc/kHz in the spectral modulation dimension. A binary bubbles filter was applied to 
MPS pixels encoding spectral modulations ≤ 15 Hz and temporal modulations < 50 Hz (151 × 99 
pixels). The bubbles filter was applied mirror-symmetrically to regions of the MPS encoding 
upward- and downward-sweeping spectrotemporal modulations (Venezia et al., 2016, 2019). The 
bubbles filter was created by generating an all-zero image of size 151 × 99 pixels, setting a 
randomly-selected subset of pixels (equal to the number of bubbles, chosen adaptively for each 
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listener) to a value of one, smoothing with a Gaussian filter with sigma = 5 pixels (0.5 cyc/kHz) 
in the spectral modulation dimension and sigma = 4 pixels (2 Hz) in the temporal modulation 
dimension, and binarizing the resulting image using a cutoff value of 0.1. Finally, the binary 
bubbles filter was multiplied with the MPS, a filtered magnitude spectrogram was obtained by 
inverse 2D-FFT, and a filtered waveform was obtained by PGHI. 

Multinomial Logistic Regression Procedure 

Model fitting was carried out using the glmnet package v2.0-16 in R v3.4.4. For a 
response variable with K categories, the multinomial logistic regression problem is characterized 
by glmnet as follows (Hastie & Qian, 2014): 
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where k is a given response category, x is the predictor matrix, β is a p × k matrix of regression 
coefficients (weights), p is the number of predictors in x, β0 is a length-p vector of regression 
coefficients belonging to a reference category, and l is an indicator variable summing over the k 
response categories. The model estimates Pr 𝐺 = 𝑘 𝑋 = 𝑥) as an n × K matrix of probabilities, 
where n is the number of observations and each row (observation) sums to one. The value in 
each column indicates the probability that an observation belongs to the kth response category 
given the set of predictor values, x. The best-fitting set of weights, β, is determined by 
minimizing the model deviance: 
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where i indexes the observation number, j indexes the response category, yij is the jth value of a 
length-K binary vector indicating which response category observation i belongs to, and xi is the 
length-p vector of predictor values for observation i. This reduces to twice the sum over 
observations of the multi-log loss, which is the minus log-probability assigned by the model to 
the actual response category. An L2 (ridge) penalty term approximately equal to a constant, λ, 
times the squared magnitude of the regression coefficients, β, was included in the likelihood 
function of the regression model. The constant λ is thus a hyper-parameter of the model and must 
be tuned by cross-validation. The reader is referred to Hastie and Qian (2014) for a complete 
description of the multinomial likelihood function in glmnet. 

 In the context of the current experiment, the predictors, x, are the trial-by-trial, bubbles-
filter feature vectors, and each column of the matrix of regression coefficients, β, is a 
classification image (CImg) once reshaped to the original dimensions of 151 × 40 pixels. In fact, 
multinomial CImgs must be interpreted relative to a reference category (β0), which is the 
‘incorrect’ category. Therefore, we obtain three CImgs from the multinomial regression model: a 
color+number CImg, a color-only CImg, and number-only CImg. These CImgs are obtained by 
taking the difference between βk for a given response category (color+number, color only, 
number only) and β0 for the reference category (incorrect). We also obtain predictions from the 
fitted model indicating the probability that a given observation belongs to each of the possible 
response categories: color+number, color only, number only, and incorrect. The predictive 
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performance of the model is characterized by the mean multi-log loss across the set of 
observations for which predictions were generated. 

 For model fitting, the data from a given participant were split into pseudo-randomly 
selected training (75% of trials) and test (25% of trials) sets balanced for the distribution of 
response types. The value of hyper-parameter λ was then optimized on the training set using 10-
fold cross-validation. The search space for λ included powers of two from 0-9 in steps of 0.1. 
The optimal value of λ was taken to be the largest such value whose (across-fold) average 
deviance was within one standard error of the minimum average deviance over the entire search 
space (Hastie et al., 2009). The predictor variables were centered and scaled separately for each 
cross-validation fold to avoid information leak. Once an optimal λ value was obtained for each 
participant, the sample-wide optimal lambda value was obtained as the average of the individual-
participant optimal lambda values. A sample-wide optimal λ was obtained so that the regression 
coefficients (CImgs) would be equally smooth (larger λ = greater smoothing) across participants. 
The optimal values of lambda were not significantly different between ONH and OHI listener 
groups (t18 = 1.49, p = 0.15). Using the sample-wide optimal lambda value, the multinomial 
regression model was re-fitted to the entire training data set of each participant. Predictor 
variables were again centered and scaled. From these fully trained participant-level regression 
models, CImgs were obtained for each participant and the model’s predictive performance was 
calculated as the multi-log loss of the model predictions on each participant’s test data set. When 
obtaining predictive performance, the predictor variables in the test set were centered and scaled 
using the mean and standard deviation obtained from training set to avoid information leak. 

 

 

 

References 

Acoustical Society of America. (2004). American National Standard Specification for Octave-band and 
Fractional-octave-band Analog and Digital Filters: ANSI S1.11-2004.  

Hastie, T., & Qian, J. (2014). Glmnet vignette. 
http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 
inference, and prediction. Springer. 

Humes, L. E., & Coughlin, M. (2009). Aided speech-identification performance in single-talker 
competition by older adults with impaired hearing. Scandinavian Journal of Psychology 50(5), 
485–494. https://doi.org/10.1111/j.1467-9450.2009.00740.x 

Průša, Z., Søndergaard, P. L., Holighaus, N., Wiesmeyr, C., & Balazs, P. (2014). The Large Time-
Frequency Analysis Toolbox 2.0. In M. Aramaki, O. Derrien, R. Kronland-Martinet, & S. Ystad 
(Eds.), Sound, music, and motion, lecture notes in computer science (pp. 419–442). Springer.  

Venezia, J. H., Hickok, G., & Richards, V. M. (2016). Auditory “bubbles”: Efficient classification of the 
spectrotemporal modulations essential for speech intelligibility. The Journal of the Acoustical 
Society of America, 140(2), 1072–1088. https://doi.org/10.1121/1.4960544 

Venezia, J. H., Martin, A.-G., Hickok, G., & Richards, V. M. (2019). Identification of the 
spectrotemporal modulations that support speech intelligibility in hearing-impaired and normal-
hearing listeners. Journal of Speech, Language, and Hearing Research, 62(4), 1051–1067. 
https://doi.org/10.1044/2018_JSLHR-H-18-0045 


