Descriptive analysis interactive patterning (Croake et al., 2019)

Purpose: Normative data for many objective voice measures are routinely used in clinical voice assessment; however, normative data reflect vocal output, but not vocalization process. The underlying physiologic processes of healthy phonation have been shown to be nonlinear and thus are likely different across individuals. Dynamic systems theory postulates that performance behaviors emerge from the nonlinear interplay of multiple physiologic components and that certain patterns are preferred and loosely governed by the interactions of physiology, task, and environment. The purpose of this study was to descriptively characterize the interactive nature of the vocalization subsystem triad in subjects with healthy voices and to determine if differing subgroups could be delineated to better understand how healthy voicing is physiologically generated.
Method: Respiratory kinematic, aerodynamic, and acoustic formant data were obtained from 29 individuals with healthy voices (21 female and eight male). Multivariate analyses were used to descriptively characterize the interactions among the subsystems that contributed to healthy voicing.
Results: Group data revealed representative measures of the 3 subsystems to be generally within the boundaries of established normative data. Despite this, 3 distinct clusters were delineated that represented 3 subgroups of individuals with differing subsystem patterning. Seven of the 9 measured variables in this study were found to be significantly different across at least 1 of the 3 subgroups indicating differing physiologic processes across individuals.
Conclusion: Vocal output in healthy individuals appears to be generated by distinct and preferred physiologic processes that were represented by 3 subgroups indicating that the process of vocalization is different among individuals, but not entirely idiosyncratic. Possibilities for these differences are explored using the framework of dynamic systems theory and the dynamics of emergent behaviors. A revised physiologic model of phonation that accounts for differences within and among the vocalization subsystems is described.

Supplemental Material S1. Individual subject data by cluster.

Croake, D. J., Andreatta, R. D., & Stemple, J. C. (2019). Descriptive analysis of the interactive patterning of the vocalization subsystems in healthy participants: A dynamic systems perspective. Journal of Speech, Language, and Hearing Research. Advance online publication. https://doi.org/10.1044/2018_JSLHR-S-17-0466